Tag Archives: Building Code

How Much Room Will Stairs Take?

 I am an advocate of avoiding stairs in post frame buildings. They both take up space and reduce accessibility to upper level(s) of your building. It is less expensive to construct a post frame building on one level, rather than multi-levels. 

 

I happen to live in a barndominium (actually more technically speaking a shouse – or shop/house combination) and we have stairs. Lots of stairs, due to our living area being located on our second floor. Our second floor also happens to be 20 feet above grade! We also have two elevators. First of these was a pneumatic “tube” elevator because my lovely bride let me know there is no way she was going to tote groceries up those stairs! Our second elevator is a full sized one, necessitated after my wife’s tragic motorcycle accident four years ago, leaving her a paraplegic.

Back to our case at hand – how much area will stairs take?

For residential (R-3) use maximum rise of stairs is 7-3/4” and minimum run is 10”. 

For sake of this example, we will assume lower floor is going to be a concrete slab on grade. Begin with vertical distance from grade (bottom of pressure preservative treated splash plank) to top of flooring of second floor.  Deduct four inches for concrete floor thickness.

Arbitrarily picking 9 feet for top of second floor, we have 9 feet X 12 = 108 inches. Deducting for slab = 104 inches.

104 inches / 7-3/4 inches of maximum rise = 13.42. Rounding up we get 14 total risers, with our second floor itself becoming number 14.

13 treads remain, at a minimum of 10 inches = 130 inches or 10’6” of horizontal floor space. But wait, there is more!!

A minimum of three feet of space (for a three foot width stairs) must be provided at both top and bottom of stairs, so allow for these areas as well.

For Building Code requirements for stairs, please see: https://www.hansenpolebuildings.com/2015/09/stairs-2/

How Tall? Monitor Style Barns, and Planning a Building

Today’s PBG discusses “how tall a pole barn” can be, opening on a monitor style building, and planning a buildings for and shop and car storage.

DEAR POLE BARN GURU: How tall can pole barn be in Cape May County? BUD in CAPE MAY

DEAR BUD: This will depend upon how your property is zoned, as well as use of your proposed building. A call to the Cape May County Planning Department, with your Parcel Number or address, at 1(609)465-1080 should get you a correct answer.

 

DEAR POLE BARN GURU: For one of your monitor style barns, project #06-0608, you do not list the eave lights at the top of the building in your materials list. Are these picture windows or awning style, or is this an open space? How important is it to use these windows for ventilation in a monitor styled shop. By the way, where are you located? FRED in WASHOUGAL

DEAR FRED: For this particular project our client provided his own fixed windows. For most installations, it is not needed to have ventilation at this location. Should your intended use be residential, you will probably want one or more of them to be able to be opened.

We have a sales only office in Fargo, North Dakota. We have sales, ordering, warehousing and shipping at our headquarters along the South Dakota side of Lake Traverse. We also have remote Building Designers across the country – including several in your home state of Washington.

DEAR POLE BARN GURU: Sir, I am in the planning stages of building a pole building to store some old cars and use as a workshop. The building will have storage trusses for a floored attic and eventually I plan on heating garage area with a forced air wall mount propane heater. I will have house wrap applied to the walls between the wall grits/ posts and the metal siding. So my question pertains to radiant barrier (double bubble) being applied to the roof. Is it better to apply the radiant barrier on top of roof trusses but below purlins or above the roof purlins against the metal roof. Additionally should I be concerned with enhanced condensation with purlin wood rot and metal deterioration if the radiant barrier is installed underneath the purlins? JIM in JARRETTSVILLE

DEAR JIM: Since you are in planning stages, I will throw lots of free advice at you.

If you have available space, it is less expensive and more practical for access to have a larger footprint, than it is to have storage trusses with a bonus room. Negotiating stairs ends up being problematic.

Propane heat adds a great deal of moisture to your inside air and could add to condensation issues.

Remember Reflective Radiant Barriers are not insulation (https://www.hansenpolebuildings.com/2014/04/reflective-insulation-wars/). Properly sealed they can prove to be an effective condensation control. Double bubble will be no more effective than single bubble, but will be significantly more expensive. Your most effective condensation control with a reflective radiant barrier will be to install it directly between purlins and roof steel. Personally, I would use Dripstop or Condenstop (https://www.hansenpolebuildings.com/2014/07/condenstop/) rather than reflective radiant barrier.

 

I’d Rather Order My New Pole Building Myself

We humans want to do things ourselves. We love GPS because it keeps us from having to ask strangers for help or admitting we are lost.

I admit to, at one time in my life, being an extremist at “doing it myself”.

Then I learned….. by listening to experts I could learn so much faster.

Consider me – I’ve either personally made more mistakes or been a party to helping people fix theirs, than most can even begin to imagine.

Why should you repeat these sins?

Answer: You do not have to. Here is a case in point real life story thanks to reader ARNOLD:

“It would be really neat if when filling out information your page a potential customer could get the information without having to give name, email, and what all else.  Kind of a pain in the rear if you know what I mean.

Thanks”

Mike the Pole Barn Guru writes:

Thank you very much for your input. Certainly we could have our system set up so you could go online and actually even order a building, without ever having to talk to anyone. Think of it similar to be able to custom produce a massive set of somewhat Lego® like pieces online and have them delivered. We could do it……

And chances are you would end up regretting your decision forever.

Our system would allow you to make changes in climactic design. This could result in you not having a building meeting Building Code loadings. Worst case scenarios being you would either not be allowed to build, or (in jurisdictions with no plan reviews and field inspections) your building could fail and injure or kill someone. Decrease snow and/or wind loads or chose B for wind exposure instead of C could result in both savings as well as collapses. Your building department would also reject your plans…or even worse, your building, once you had constructed it. Planning on “doing it yourself” and not ever contacting your building department? In one word: Don’t!!! I’ve seen far too many customers snagged on their buildings after they were built. Worse case, the building department made them tear it down.

About Hansen BuildingsFace it, we humans are dimensionally challenged. Even though we have an idea a basketball hoop will be at 10 feet, we think our car needs a door this height. We want to make certain you design a building with adequate spaces for your activities. This includes properly sized doors, properly spaced, to actually allow prized possessions in or out without damage to your building or something treasured.

Our having you interact with a real live person has a goal of keeping you (as much as possible) from making crucial design errors causing you to hate your pole building forever. One of those mistakes would be us allowing you, as a serious future building owner, to order a post frame building from someone else. We firmly believe we have the absolute best value in a complete, engineered post frame building kit package – enough so we offer to go comparative shop for any client prepared to invest in a building. Call 866-200-9657 and ask us about this service. It’s free!

18 Foot Span Roof Purlins?

The Possibility of 18 Foot Span Roof Purlins?

Reader CHRIS writes:
“I have a building I want to build but I am not able to add the height I need on the side walls.  My plans are 24 deep by 30 wide with 8 foot walls.  Roof trusses would be 24 ft.  My problem comes from overhead power lines.  They are right in my way.  I really need 10 or more feet of ceiling.  The wall structure will be 2×4 residential style build with double top and bottom boards this should spread the weight out on the concrete well.

The span of the 1st section (north side), would need to be 18ft.   If I used a triple truss at 18 ft. and 2×8 purlins would I be able to get this to work.  I will be using a metal roof the 30 ft. wall will have a 16 ft. door and 9 ft. door Eve entry.  I know it’s not optimal.  But to get a lift inside the garage it will be a must to get this span.  Also my garage door will follow the roof line. In the 18 ft. area it will be hung from the purlins.  A winch will be used as an opener.  Also attached to the purlins but boxed to prevent movement.”

Mike the Pole Barn Guru writes:
In most jurisdictions you are not allowed to build under power lines – you need to be consulting with your local power company and your Building Official first. Even if it is allowed, you would be wise to have the lines relocated, or buried so as to not have a future issue. A live wire comes down on your nice new steel roof and poof!

Depending upon your roof load and wind load, it might be possible to span 18 feet between trusses with purlins, however they are probably going to need to be larger than 2×8. With the proper truss design, it might very well be able to carry the end of the purlins with a double truss.

What you are proposing is well outside of the prescriptive portions of the Building Codes, so whether stick framed or post frame (post frame will be far more economical) you should be utilizing the services of a RDP (Registered Design Professional – architect or engineer) in order to make sure you have a new building which is adequately designed to support the imposed loads.

Pole Barn Footings

Some things in life amaze me – magicians are one of them. I have no idea how the do what they do, but I am totally fascinated by them (you can read about my college experience with a magician here: https://www.hansenpolebuildings.com/2014/08/lumber-bending/). One of the other things which amaze me are how clients will invest tens (or hundreds) of thousands of dollars on a new post frame building, only to cheap out on the footings!

Anything of high quality requires a good foundation.  In post frame buildings, the measure of a good foundation’s investment is small in comparison to the overall picture.

Reader CHRISTINE from SPOKANE writes:

“We see all these posts about footings. It seems here they just pour concrete around post with no footings. Is that due to the nature of our rocky soil. Our posts are in the ground, no footing and ready for concrete, architect plans, say “bottom of all footings to bear on undisturbed ,native, inorganic soil 1′ min below grade. Extend all footings 4′ min below finish grade.” Did I assume wrong and he’s calling for an actual footing? TYIA! ASAP”

Dear Christine;

For years we designed our post frame buildings without a concrete footing below the columns, instead relying upon the concrete encasement around the posts to adequately bond to the pressure preservative treated column. The bond strength between concrete and wood is documented and more can be read about it here: https://www.hansenpolebuildings.com/2013/04/pole-barn-post-in-concrete/. There were some Plans Examiners who did not look kindly upon this as a design solution.

The Building Codes do specify the requirement for a concrete footing, and as such we moved several years ago to a design which placed eight inches thick of concrete below the column.

As an architect designed your building and placed his seal upon the plans, you are obligated to construct the building per his/her solution. There should be a detail on the plans which shows exactly what the architect had in mind. If there is not, request a clarification as this is something you paid for in your fee for the work.

Mike the Pole Barn Guru

Looking for a post frame building with a column embedment design which both makes sense and works structurally? If so, only consider a building which comes with plans done specifically for your building, on your site, and sealed by a Registered Professional Engineer.

Prohibition of Pole Barn Construction

The Construction of Pole Barns is Prohibited

Seriously?

This is directly from the White Bear Lake Township (Minnesota) ordinances related to Building Codes, buried deep in their Ordinance No. 8:

5-34. POLE BUILDINGS. The construction of pole barns/buildings is prohibited in the Town.

I found this as a result of an article in the White Bear Press, excerpted below:

“There was also a lengthy discussion regarding pole barns after Planner Tom Riedesel presented several amendments recommended by the Variance Board and Planning Commission.

It all started with a request from residents Don and Janice Stock on Portland Avenue to replace an existing pole barn with a new upgraded design post-frame building. Historically, pole barns have not been allowed by the township due to building quality and aesthetics. However, the quality has improved over the years, so the Board approved the variance with strict standards for construction. Don Stock, whose home is located in the far northeast section of the town, spoke at the meeting to assure the board that the building will match the brown on his home’s natural cedar siding.”

It was reassuring to see the Board approving the variance. Post frame (pole) buildings are Code conforming structures, in accordance with the IBC (International Building Code). It is acceptable for jurisdictions to legislate the exterior appearance of a structure (colors or types of exterior coverings), however it would be a restriction of trade to attempt to prohibit a building system.

I’ve successfully won similar discussions throughout the country – all it has ever taken is a phone call to discuss with the jurisdiction’s legal representation. Attorneys seem to have an understanding of what this type of prohibition truly means in respect to trying to defend against it. It is a no win.

Running into a similar circumstance with your new proposed post frame building? If so, please feel free to pass along the situation to me, chances are more than fair I can assist with its quick resolution.

Design Wind Speed Changes

Design Wind Speed Changes with Building Code Editions

Every three years a new version of the International Building Code (IBC) is printed, which brings with it the latest and greatest information for building design as approved by Code Officials. State and local permit issuing jurisdictions then can either adopt or amend the Code as they best see fit.

Even though the Code is updated on a three year cycle, some jurisdictions opt to continue to utilize earlier versions of the Code.

Provisions for design loads are set forth in Chapter 16 of the IBC.

There are significant changes to the design wind load requirements for fenestration between the 2009 IBC and the 2012 editions of the same code. These are due to significant changes to the wind load provision of ASCE (American Society® of Civil Engineers) 7 between the 2005 and 2010 edition.

The design wind load provisions of the 2005 and earlier editions of ASCE 7 were based upon allowable stress design of building components. The intent of this method was to provide loads to which the building components had a fairly high likelihood of being exposed during the service life of the building. The building components were then designed to remain serviceable (i.e. not require replacement) when subjected to this load.

The 2010 edition of ASCE 7 provides design wind load provisions which are based upon strength design of building components. This method provides loads which have a lower likelihood of occurring during the service life of the building. The building components are then designed not to fail (rupture) when subjected to this load.

This change in methodology results in higher design wind speeds and pressures. At first glance, this might give the appearance of requiring higher DP (Design Pressure) ratings. In actuality, the 2012 IBC contains provisions to multiply this new, higher load by a factor of 0.6 for the purpose of conversion to the more traditional method of determining the design wind pressure based upon allowable stress design. It is very important the builder, code official, manufacturer and anyone else involved in choosing or approving the structural building design for a particular application understand the higher design wind pressure provided by the 2012 IBC must be multiplied by this 0.6 conversion factor.

In most, but not all, cases this conversion results in required design pressure ratings which are roughly comparable to the more traditionally determined values.

ASCE7-10 also provides three different design wind speed maps. The different maps are based upon the assigned Risk Category of the building being designed.

  1. There is one map for buildings whose collapse would present a low risk to human life, such as barns and storage facilities.
  2. There is a second map for buildings whose collapse is considered to be a moderate hazard to human life. Most buildings fall within this category.
  3. There is a third map for buildings whose collapse is considered a high threat to human life, and for those which are considered essential facilities. The former includes assembly or education buildings designed to house groups of 250 or more people, some medical care facilities and any other buildings designed to house 5,000 people or more. Essential facilities include occupancies such as hospitals and police and fire stations, which are essential during emergency response situations.

The new maps result in higher design wind loads for buildings of moderate hazard to human life than for those of lower hazard. The highest design wind loads are given by the third map for buildings of high hazard to human life and essential facilities. Previous editions of ASCE 7 and the IBC also required these types of buildings to be designed to higher design loads, but the actual increase was applied in a different manner.

Considering a new post frame (pole) building? If you are looking at a building which is NOT designed by a registered design professional (RDP – engineer or architect) then there is an excellent chance the person or persons involved in the design do not understand the changes brought about by the newer editions of the Code and you could end up with an under designed building.

Under design can result in catastrophic failure – or even death. Don’t take the risk, demand an engineered building.

Your life or the lives of your loved ones could be at stake.

Buying a Used Pole Building

40’ x 60’ Used Pole Building – $14000 (Silverton)  SERIOUSLY?

The following ad appeared in the Salem, Oregon Craigslist December 6, 2016 in for sale > farm & garden – by owner:

“I have a nice fully enclosed 14 foot tall pole building. It is fully disassembled and ready for transport. All the metal is fully galvanized. The building has a clear span with 4 double trusses and framed ends.”

Now, the ten top reasons why buying this used pole building would be so wrong:

#10 It is all galvanized steel – generally most folks do not find this to be aesthetically pleasing!

#9 You are going to have to pick it up and transport it – plan on a semi pulling at least a 40 foot long trailer, because those trusses are 40 feet long! Might be handy to have either a boom truck or a forklift there to hoist everything onto the trailer;

#8 And unload it when it gets to your site – some offloading equipment could be handy here;

#7 It isn’t designed to current Building Codes – so you cannot get a permit to erect it – Oregon DOES have an agricultural exemption which you might qualify for. Don’t even consider putting it up without a permit unless you are 100% certain it is exempt;

#6 The wall girts flat to the wind on the outside of the columns – they will overly deflect (again not meeting the Building Code);

#5 Plywood gussets on the trusses – even if your seller has the engineered drawings for them, they are not going to meet the current Building Code;

#4 There is no lateral truss bracing – as the trusses are on each side of the columns are acting as single trusses. At a bare minimum, they will need a row of 2×4 “T” bracing no more than 10 feet on center;

#3 The wood framed sliding door is going to be heavy – and it probably has square barn door tracks. You may want to replace it with a steel framed sliding door and a round track so it is light enough and easy enough to roll open and closed;

#2 Sure hope you can get all of the steel back in the exact same places – because if you are unable to, there is a good chance you will experience roof leaks;

And the #1 reason – For about $3,000 more, you could get a brand new post frame building designed to meet the building code, with all new materials, delivered to your site, with all colored steel roofing and siding PLUS engineered plans!

Cross Laminated Timber

And long-time reader Vincent Phelps has another great question: “CBS Sunday morning had a segment on CLT, Cross Laminated timber. It brought timber frame construction to mind. Your thoughts on this technique for the Pole builder?”

https://www.cbsnews.com/news/living-the-high-life/

Cross-laminated timber (CLT) is a large-scale, prefabricated, solid engineered wood panel. Lightweight yet very strong, with superior acoustic, fire, seismic, and thermal performance, CLT is also fast and easy to install, generating almost no waste onsite. CLT offers design flexibility and low environmental impacts. For these reasons, cross-laminated timber is proving to be a highly advantageous alternative to conventional materials like concrete, masonry, or steel, especially in multi-family and commercial construction.

CLT PanelA CLT panel consists of several layers of kiln-dried lumber boards stacked in alternating directions, bonded with structural adhesives, and pressed to form a solid, straight, rectangular panel. CLT panels consist of an odd number of layers (usually, three to seven,) and may be sanded or prefinished before shipping. While at the mill, CLT panels are cut to size, including door and window openings, with state-of-the art CNC (Computer Numerical Controlled) routers, capable of making complex cuts with high precision. Finished CLT panels are exceptionally stiff, strong, and stable, handling load transfer on all sides.

There are some CLT fallacies being circulated:

  • CLT isn’t in the Building Code – wrong, CLT panels have great potential for providing cost-effective building solutions for residential, commercial, and institutional buildings, as well as large industrial facilities in accordance with the International Building Code.  In 2015, CLT will be incorporated into the International Building Code (IBC). The IBC recently adopted ANSI CLT Standard PRG 320 into the 2015 IBC, so you can request a design review based on it now and submit it as an alternate material, design and methods (AMM).
  • It is wood, it burns – Like using a few 12-inch-diameter logs to start a camp fire, mass timber does not catch fire easily. In fact, CLT acts more like concrete. Mass timber is not conventional so it is very hard to light, and once it is lit, it wants to put itself out. A research project recently completed at FPInnovations showed CLT panels have the potential to provide excellent fire resistance, often comparable to typical heavy construction assemblies of non-combustible construction. CLT panels can maintain significant structural capacity for an extended duration of time when exposed to fire.
  • It takes a specialized crew – Keep in mind, CLT is just another form of glue laminated timber (glulam). It is just wood, so it designs and builds on the earlier technology. CLT panels, like other industry panels (precast concrete or SIP panels), provide easy handling during construction and a high level of prefabrication facilitation and rapid project completion.  A conventional wood installation crew with other panel experience can lift, set, and screw down CLT panels, and with a manufacturer provided installation plan, it goes even faster.
  • It isn’t environmentally friendly – CLT is manufactured 2×6 lumber from trees harvested from sustainable managed forests, and mostly Mountain Pine Beetle kill trees. If we don’t use them, they decay and emit carbon back into the atmosphere. Wood is also the only primary structural material which grows naturally and is renewable. In fact, according to “Sustainable Forestry in North America,” during the last 50 years less than 2% of the standing tree inventory in the U.S. was harvested each year, while net tree growth was three percent.
  • It is expensive – When considering the total in-place value of a CLT system, it is cost competitive to other plate building materials. But you also need to consider all the value added benefits.More savings can be found in the reduced installation cost, usually 50% cheaper than installing other plate materials.With an earlier project completion date, you are open for business sometimes months ahead of schedule.

    The building structure will weigh less than half the weight of other construction types, so the foundation costs less money.

  • Job site safety is dramatically increased due to the prefabricated CLT panels and usually the only power tools are pneumatic drills.

The intent of CLT is not to replace light-frame construction, but rather to offer a versatile, low-carbon, and cost-competitive wood-based solution which complements the existing light frame and heavy timber options while offering a suitable candidate for some applications which currently use concrete, masonry, and steel.

My take on your question Vincent – CLT is a pretty neat product, but just like SIPs,

https://www.hansenpolebuildings.com/2015/02/sips/

they are not a practical design solution for most post frame applications.

However, if you want to construct a wooden skyscraper, CLT might be just the thing!

Gypsum Board on Walls

If it is weird, strange or otherwise just bizarre, when it comes to pole buildings, chances are it will eventually come across my desk. Otherwise I would have run out of material to write articles about a long, long time ago.

And it is rewarding to know I’ve got lots of loyal readers – like my friend Vincent….when technology failed last week and an article wasn’t up right away one day last week, he let me know how saddened he was, as he reads them every day at lunch!!

Back to the otherworldly….

We have clients who are constructing two fairly good sized buildings for the growing of green leafy substances which are entirely legal (although highly regulated) in two states currently – Colorado and Washington. The buildings were ordered with framing to support steel wall liner panels, so evenly spaced up the walls, the girts are every 34-1/8 inches on center. All well and good, for steel.

However, the clients have now determined they would like to have gypsum board drywall (aka sheetrock) on the inside of the exterior walls. It appears this decision may be due in part to their Building Official deciding the Building Occupancy Classification F-1 structures are somehow not allowed to have steel liner panels over insulation….we’re awaiting the section of the Code (2012 International Building Code) which would have this stipulation, as currently we have been unable to find it.

The determiner on whether gypsum board will work in any given application is going to be deflection.

“IBC 1604.3 Serviceability. Structural systems and members thereof shall be designed to have adequate stiffness to limit deflections and lateral drift.”

green-drywallIBC TABLE 1604.3 DEFLECTION LIMITS addresses the allowable deflection as “l” – the distance being spanned divided by a given unit of acceptable deflection. For exterior walls with flexible finish (such as gypsum drywall) under a wind load, this limitation is l/120. And from Footnote “f” of the table, “The wind load is permitted to be taken as 0.42 times the “component and cladding” loads for the purpose of determining deflection limits herein.

The Vult design wind speed for this structure is 110 mph (miles per hour). The net lateral pressures on the walls are greatest in Surface 1E (near the corners) of 17.697 psf (pounds per square foot), with a components and cladding wind pressure of -19.6 psf. 19.6 psf X 0.42 = 8.232 psf.

I called the good folks at USG (United States Gypsum – www.usg.com) to get their take on whether their 5/8” thick Sheetrock™ would span the 34-1/8” on center spacing of the wood framing without undue deflection. Being it was late on a Friday afternoon, the feedback was limited in its scope, however, they did email me the “Gypsum Association Properties of Gypsum Board”, which turns out to have some useful information. On Page 3 of 5 of the document copyrighted by the Gypsum Association is a table for “Negative Wind Load Resistance”. For ½” thickness over wood framing at 16 inches on center the allowable load is 80 psf, for 5/8”130 psf.

Allowable deflection is based upon the span^4. This makes the deflection at 2.84375 feet (34-1/8”) 20.692 times the deflection of 1.333 feet (16”). Using 130 psf / 20.692 results in a maximum psf of 6.28 which is less than the calculated 8.232, so 5/8” gypsum drywall would not be an adequate design solution. Under these load conditions, the maximum span of the 5/8” gypsum drywall would be 31.9”.

What about ½” drywall over 24 inch on center supports? The deflection at 24 inches on center is 5.0625 times the deflection at 16 inches. 80 / 5.0625 = 15.8 psf, which would prove adequate given these loads.

Minimum Wind And Snow Loads

Hansen Pole Buildings is a proud member of the NFBA (National Frame Building Association https://www.nfba.org). Pretty much every Monday the Association sends out a newsletter, via email, to its members.

In today’s newsletter was a link to an article written by Stephen Szoke and published in Construction Executive, May 5, “Building Codes: One Size Does Not Fit All”. (The entire article can be read here: https://enewsletters.constructionexec.com/managingyourbusiness/2015/05/building-codes-one-size-does-not-fit-all/).

International Building CodeI got a different takeaway than most people probably did from the article. In my humble opinion, the Building Codes themselves should be consistent, however local jurisdictions should establish their own minimum climactic loading requirements (snow and wind loads) – but not tamper with the Code itself. The Code is the product of the collective minds of some of the most brilliant engineers, designers and Building Officials on the planet – they have more than a small clue as to what they are doing.

With over 7,000 Building Permit issuing jurisdictions in the United States, if each of them even altered a few words (which is not uncommon) the resultant is RDPs (Registered Design Professionals – architects and engineers) pulling out their hair trying to meet local quirks.

Getting back on track – here is what truly struck me from the article: “The rise in property losses seems to correlate well with information about a cultural/societal trend reported at the 2014 Concrete Sustainability Conference by Michael D. Lepech, Ph.D., an assistant professor in Stanford’s Department of Civil and Environmental Engineering. He reported that business models with an emphasis on maximum return on investment have driven or even forced businesses toward least initial cost. In construction, this appears to have resulted in a trend toward minimum code, which is synonymous with least initial cost.

Clearly, one option is to wait for the cultural-societal pendulum to swing back toward more quality and value in lieu of least initial cost.” 

In layperson’s terms – too many buildings are designed penny wise and pound foolish. It makes absolutely no sense, at least in my head, to save a thousand dollars of initial investment, if the result is spending tens of thousands of dollars in repair and maintenance costs!

The Building Codes are for design to “minimum” standards. I know, for a fact, most pole builders and pole building kit suppliers are not going to ever discuss an increase in wind and snow loads beyond bare minimums. In many cases, due to lack of Code enforcement or exemptions from structural plan reviews – the bare minimums are not even being met!

How do I know this for a fact?

Because the great majority of other people who do something similar to what we do (I won’t even lift them up to the level of calling them competitors) don’t even list the design loads on their pole building quotes!

Seriously!

Don’t ever be shy about asking how much of an added investment it would be to increase the design wind and snow loads for your soon to be new building. I want you to have the last building standing in the event of a catastrophic event

Let’s Talk Snow Load

Even though it is now May – the heavy snowfalls in the New England states this past winter have left many with concerns. Here is an actual conversation, between a client who recently invested in a new Hansen Pole Building kit package, and our Technical Support Department:

Client: Good Afternoon,

Quick couple of questions.  The plans look like the wall girts for this project are the “commercial wall girt” design (Option 1)? 

I was initially under the impression that Option 1 was just for the design where the “Roof Purlins /joist are hung vertically from the side of the Trusses”.  I did not know that Option 1 also included a commercial wall girt design. 

Is it necessary to use the commercial wall girt design if I have Option 1:  “Roof Purlins /joist are hung vertically from the side of the Trusses” design? OR could the Wall Girts be just 2 x 4s nailed on the outside of the Support Posts?

Just curious-

After answering these couple of questions, I will log back in and approve the drawings.”

Building Code Snow LoadsNo snow yet, but we will get to it. Here is the response:

Thank you very much for your investment in a new Hansen Pole Building. Every building we provide has each member and connection structurally checked for adequacy under the most stringent Code provisions. Other than for very small column spacing, this means wall girts will need to be placed “book shelf” style, in order to be Code conforming.

Here is some reading which may prove helpful: https://www.hansenpolebuildings.com/blog/2012/03/girts/

Now we will get literally knee deep into the snow:

“The structural support poles on my drawing are at 14 ft.   Not 10 ft, and not 8 ft.  This is my concern.  (I read the guru blog).  14 feet between poles with double trusses, still doesn’t cut it when I could have 5 feet of snow on the roof.  This barn will be located in Northern Maine.”

Thank you for your concerns. Your building has been designed for the loading recommended for your area, 50 psf ground snow load – which you acknowledged as being verified by you as adequate with your Building Department, prior to your order being placed.

If you are planning upon having five feet of snow sit on top of your roof, then we would recommend increasing the snow load capacity of your roof to somewhere in the vicinity of 100 psf (this would equate to a ground snow load of approximately 173 psf). To increase the roof snow load by this 346% would add $xxxx to your investment.

Please advise accordingly.

“After some further research, I have found that the recommended ground snow load for my county in Maine is 90 PSF.  Please advise on new plan design and associated incremental cost to my project to accommodate.”

Just want to confirm you feel this will be adequate for your particular site, as a 90 psf ground snow load will support about 30-32″ of snow on the roof. If indeed you believe a greater depth may be placed upon it, it would behoove to design accordingly.

The liability I am putting on myself here is tremendous.  Does Hansen Pole Barns have any culpability for designing this building for snow load correctly?  Because I don’t know.  I am at a loss, I am not an engineer.  We have little if any Code Enforcement in this county.   But I know we get a boat load of heavy wet snow and the building will be in a sheltered area with not much winter sunlight. 

My builder originally said it was 50 PSF (As he thought that was the code).  But I don’t think knows.   When I looked at the design that I was sent, (and I am a believer in engineering, as I am a non-certified Mechanical Engineer), I know the design is not adequate.  So, I started to research on the internet.  The best I can come up with is what I found on the internet.  SEE ATTACHED

 I am located in New Vineyard ME, Franklin County 04956.  Every town that is near me shown on the attached “Ground Snow Loading” document is listed as “Case Study”, so I am guessing at the 90 PSF. (because everything around me is either at 90 or 100 PSF 

Looking for advice”

Although you may have read this previously, it may prove good background: https://www.hansenpolebuildings.com/blog/2012/02/snow-loads/

Based upon your information, we’d recommend a change in the Ce factor from 1.0 to 1.2. This effectively increases the design roof snow load by 20%

Along with this, here are some Pg options (in psf) to pick from (as well as the investment to increase) and the approximate depth of snow on the roof for each:

90   $ 2252       38″
100      2498       42″
110      2578       46″
120      3169       50″
130      3368       54″

Me personally, I tend to go for over design – I prefer to be the one who owns the last building standing when the storm of the century hits.

New Post-Frame Building Design Manual

Post-Frame Building Design Manual

Back in 2000 the National Frame Builders Association (NFBA www.nfba.org) published the ground breaking first edition of the Post-Frame Building Design Manual.

In the foreword, then NFBA President James T. Knight so aptly wrote:

“The movement of the post-frame building into the commercial marketplace has obviously necessitated compliance with building codes. Although agricultural buildings were exempt from building codes in many areas of the United States, this was not true when buildings were built in developed areas or where public access would occur. Since the design was not understood by building officials, and since no approved and recognized design procedure had previously existed, the suitability of the post-frame structure has often been questioned.

Today, the post-frame design concept is well developed. It has, for many years, been the subject of countless research studies and analysis conducted by qualified individuals at the university level and in the private sector. This Post-Frame Design Manual, for the first time, sets forth in one document, the post-frame design criteria that is today backed up by sound and widely accepted engineering practice.”

For those with an interest, the first edition can be viewed free online at: https://www.scribd.com/doc/29750872/Post-Frame-Building-Design-Manual

At the time of its publication, the United States was governed by three differing building codes – since then codes have been unified as the IBC (International Building Code). Now in its sixth edition (a new version is published every three years), the IBC has made many changes in the way Registered Design Professionals (engineers and architects) approach structural design solutions for wind, snow and seismic forces.

Post Frame Design ManualThe NFBA has risen to the occasion with the recent introduction of the new Post-Frame Building Design Manual! The second edition of the manual—and the first new edition since 2000—is the ultimate tool for post-frame design. Eight chapters, 200 pages, and hundreds of photos, diagrams, illustrations and design tables cover everything you need to know about designing with post frame.

The Post-Frame Building Design Manual, second edition, is a must-have for anyone who works with — or is considering working with — post-frame construction.

Hansen Pole Buildings has been honored by inclusion of one of our buildings on the cover of the new manual. In fact, it is in the center of the three completed buildings pictured!

Download YOUR copy now:

https://apps.nfba.org/Store/ProductDetails.aspx?productId=344022

When is it Time to Remove Roof Snow?

Regardless of what side of the climate change argument one is on – it has been snowing in Massachusetts this winter.

A lot.

Late January’s Winter Storm Juno alone brought up to 36 inches of snow in some parts of Massachusetts. https://www.weather.com/storms/winter/news/winter-storm-juno-snow-totals-wind-gusts

As if Juno wasn’t enough, another storm followed – leaving so much snow on the ground it forced the postponement of the celebratory parade through Boston for the Super Bowl Champion New England Patriots. https://www.cbsnews.com/news/flash-freezing-now-the-big-concern-in-northeast/

So, how much snow is too much for one’s roof?roof snow

As a basic rule of thumb, consider saturated snow weighs in at approximately 20 pounds per cubic foot. This weight is based upon a 25% moisture density, which may be conservative or liberal, as the actual moisture content of snow can range from approximately 1% to 33%.

Using the 20 pounds per cubic foot, this means every inch of snow will add 1-2/3 pounds per square foot of weight!

Any ice build-up on roofs would need to be added in as well. Use 5.2 pounds for each inch of ice depth.

For those who want to get scientific, the actual roof snow load can be checked by cutting a one foot square the full depth of the snow and ice build-up on the roof, dumping into a plastic bag and weighing the contents.

Modern buildings are designed for a snow load which assumes the roof snow load will be exceeded anywhere from once in 25 to once in 100 years, depending upon the Risk Category of the structure. The actual International Building Code language on risk categories can be read at: https://publicecodes.cyberregs.com/icod/ibc/2012/icod_ibc_2012_16_par023.htm

Buildings which were not constructed under Code requirements are often at far greater risk to collapse under snowfall. When rain falls upon snow, the weight of the roof snow can increase rapidly. Heating a building, in an attempt to melt the snow off a roof, can result in ice dams at the eave sides of the building – compounding the load problems.

Please be aware of the potential dangers of shoveling or raking snow from a roof. Besides the potential damage to the roofing materials and structure, there are such factors as a person sliding off the roof, falling off a ladder, overexerting themselves, or injury from snow sliding on top of them.

I can’t make recommendations on when to remove snow from any particular roof. It is up to the individual building owner to consider the benefits and dangers of snow removal and determine their own course of action. If your structure is in question, it is always best to consult a registered professional engineer.

Under-Designed Ag Buildings

Does Anyone Else See How This Could Be a Problem?

Eric, one of the owners of Hansen Pole Buildings, had me check out a website today for a pole building supplier who is extolling the virtues of a particular “nailed up” laminated column, which has been the subject of some discussion in my articles. https://www.hansenpolebuildings.com/blog/2014/04/titan-timbers/

This particular supplier took verbatim the information provided by the nailed up column suppliers, without questioning the validity of the data supplied.

Me, being the curious sort, took a cruise around the pole building supplier’s website.

WHAT I SAW MADE BLOOD SQUIRT OUT OF MY EYEBALLS!!

“Snow Loading                                                                                   

Xxxxx Buildings commitment to quality is second to none. This is amplified by the fact that all buildings meet or exceed the MN State Building Code. Xxxxx Buildings provides all customers ‘peace of mind’ by making sure the roof system loading for your building will keep you protected from natures elements. The roof system loading includes the trusses and the roof purlins.”

Now I am all over this! I appreciate people with a commitment to high quality and excellence in pole buildings. “…all buildings meet or exceed the MN State Building Code” is way cool….

Hay Storage BuildingUntil I read their next paragraph:

“Ag Buildings
There is no code regulation of Ag buildings, (these buildings are exempt from the code) but suggested minimum loading would be 25 psf or 30 psf live load on the roof system. The definition of an Ag building would be a structure on agricultural land designed, constructed, and used to house farm implements, hay, grain, poultry, livestock, or other horticultural products. This structure shall not be a place of human habitation or a place of employment where agricultural products are processed, treated or packaged, nor shall it be a place used by the public.”

From one side of their mouths is “all buildings” meet Code, and out of the other – they are providing “ag buildings” with loads below Code!!

Here is the Minnesota State Snow Load map: https://www.dli.mn.gov/CCLD/PDF/bc_map_snowload.pdf

To get from a Pg (ground snow load), to a roof snow load, involves the multiplication by several factors. Learn more than you ever wanted to know here: https://www.hansenpolebuildings.com/blog/2012/02/snow-loads/

For discussion’s sake, we will assume these Ag buildings are unheated (most unoccupied buildings are) with the most common 4/12 roof slopes and steel roofing. The roof truss top chord live load under this combination should be 34.7 psf with 50 psf for Pg.

This provider’s, “suggested minimum loading would be 25 psf or 30 psf of live load on the roof system” is under designing these roofs to support snow by at least 13% and as much as 40%!!

You don’t own a farm, so what do you care?

When those under designed roofs collapse and the insurance companies pay to rebuild – it is YOUR insurance rates which are going to increase!

And if you do own a farm, I’d hate to be the one cleaning up the mess when your roof caves in…and hoping you are not in it when it does!

 

Building Official Out on a Limb

Don’t get me wrong – in case I have not previously gotten my message across in earlier articles – I genuinely like Building Officials.

Most of them really do care, and go out of their way to help both do it yourselfers and building contractors. With very few exceptions, Building Officials, field inspectors and plans checkers are not registered design professionals (architects or engineers). It is when structural concerns arise, which can get them in over their heads. Going too far out on a limb without support can be dangerous.

I was contacted by one of our clients over the weekend, who is putting up his own building. The site is in the western United States, and in his particular case the design wind speed requirement is for 105 mph (miles per hour) with an Exposure C for wind (a site which is not protected from the wind). In the west, the lumber species of choice for treated timbers is generally Hem-Fir. It takes a pressure treatment well (albeit with the need to be incised) and is fairly plentiful.

Building Column OrientationThe building plans call out for the sidewall (double truss bearing) columns to be 6×8, with the six inch face oriented towards the sides of the building.

Columns in pole buildings must be able to support combined forces from bending (the wind) and compression (weight of the roof and any applicable snow loads). In most cases, the bending forces are going to be the majority of the issue.

The reason for the contact from the client was – he placed his posts with the wrong side towards the wind!

Now in construction, things happen…..it is solving the things which keep it interesting. And in pole buildings, I can’t think of a time a challenge didn’t have one or more solutions.

The client was told by his building official, “normally a 6×6 is sufficient” and he would sign off on the posts the wrong way, as long as we provided a letter stating so.

Our proprietary pole building design software gives the calculations for every component of the building. In this scenario, the columns needed to resist a ground line moment of 37,184 inch-pounds (for more on “moments” please read: https://www.hansenpolebuildings.com/blog/2012/09/bending-moment/).

Oriented properly, the 6×8 has a section modulus (Sm) of 51.563 inches. Sm is derived by squaring the depth of a member, multiplying by the width of the member, and then dividing by six. The calculations showed the columns, as designed, to be stressed to 98.4% of capacity.

Turn the column the wrong way, and the Sm is reduced to 37.82 inches and it is now overstressed by 34.2%!! Same timber. Wrong direction. Wrong answer.

BTW (by the way) – the Building Official’s 6×6 scenario would be overstressed by 83%!!

The client does have some options:

The building official could sign off on the columns as placed, making him now the designer of record (I would not recommend he do so).

In cases such as this, building officials could agree to allow the building to be designed for a lesser wind speed and exposure. At 90 mph and Exposure B, the columns would work in the orientation they were placed.

The columns could be pulled out of the ground and placed the correct direction.

Or, we could come up with a repair – which could prove to be difficult and costly. It will depend mostly upon how far along the construction process is.

Moral of the story, the direction any column is to be placed in a pole building is specified on the plans. It is not a suggestion. There are valid structural reasons it must be oriented exactly as designed. This is one place where a mistake is not so easily corrected, as the columns are literally set in stone (concrete).

Why You Need to Verify Design Criteria

Why to Verify Design Criteria

For those of you who are dedicated long term readers, I thank you. I’ve preached this subject more than once – but the message hasn’t gotten through to everyone yet. I will attempt to avoid boring anyone.

There are over 7000 building permit issuing jurisdictions in the United States. A full time employee, calling each of them for their most current code and load information, would need to reach and get data from nearly four an hour – for an entire year, and then it would be time to start all over again!

Each time a Hansen Pole Building is quoted, the design version of the Building Code, as well as all climactic forces the building is designed to, are listed on the pole building quote. Every quote also includes (in bold):

“You must confirm all code/design criteria with your Building Department prior to placing your order. 

We recommend taking this page to your building department for them to verify all design criteria listed above.”

Now my Dad used to tell me, “You can lead a horse to water, and if you hold its head under long enough, it will drown”.

Such may be the case with design criteria. Many clients not only follow instructions, they have done their homework in advance! They have contacted their Building Departments for information, before they even started pole building shopping.

We love these people! They are prepared.

Most of the rest, follow instructions well – they happily contact their Building Department and verify the information before ordering. We love you as well!

Then there are the very small percentage who make assumptions….well, we know where assumptions lead to.

When a post frame building kit package is ordered, one of the items Purchaser agrees to is:

“Seller’s designs rely solely upon occupancy category and structural criteria for and at specified job site address only, which have been provided and/or verified by Purchaser. It is Purchaser’s and only Purchaser’s responsibility to ascertain the design loads utilized in this Agreement meet or exceed the actual dead loads imposed on the structure and the live loads imposed by the local building code or historical climactic records. Purchaser understands Seller and/or Seller’s engineer(s) or agents will NOT be contacting anyone to confirm.”

design criteriaA real life example occurred recently. Client ordered a building kit and thought the roof snow load was to be 35 psf (pounds per square foot). Way too late into the game (prefabricated roof trusses had been delivered to the jobsite) the Building Department tells the permit applicant, “Oops”!

With the right information verified in the beginning, the cost difference would have been minimal. Many times, truss repairs to add five psf of load are fairly affordable. Not in this case – many of the wood members, as well as the majority of the roof truss metal connector plates were originally close to being fully stressed in the original design. For practical purposes, another truss needed to be added to every truss set, in order to meet the slightly higher loads.

Here is a case where ten minutes of the customer’s time to verify, would have saved well over a thousand dollars!

Plan ahead with your design criteria using our helpful Pole Barn Planning Guide.

Does Building to Wind Load Matter?

Biking On Down the Highway

Author’s Note: This is part 6 of a series of blogs written from a 6500+ motorcycle trip from WA to Ohio and back.  See Blog from Oct. 15th for the beginning…and hang on for the ride!

Time for another lumber yard visit.

WindThey are in Michigan (I am really not trying to pick on Michigan). Their statement, “Builders here do not like to have to build to wind loads”!!

Say WHAT???

Last I heard… buildings were to be constructed to resist wind, snow and seismic loads. I was totally unaware of a Michigan exemption against building to support wind loads!

It turns out the majority of the buildings provided by this lumber yard are agriculturally exempt, so they are not designing them for any particular load resistance characteristics.

The 2009 and earlier versions of the IBC (International Building Code) require a design wind speed for all of Michigan of 90 mph (miles per hour). The 2012 Code has bumped this up to 105 mph for Risk Category I buildings (buildings with a low risk to human life in the event of a failure) and 115 mph for Risk Category II (most inhabited structures, like homes).

Clearly ignoring wind loads appears to be an undertaking with a high degree of risk involved.

As a general rule, they provide 6×6 pressure treated columns, regardless of the height of the building, wind speed and exposure and whether the building is fully enclosed with wind rated doors, or partially enclosed.

With structural columns spaced every eight feet, 2×4 Standard & better graded wall girts are placed flat on the outsides of the columns, at 24 inches on center.

Obviously I believe every building should be designed to adequately support all of the loads which are induced – including wind. Also, it is my personal feeling every building should be designed by a RDP (registered design professional – engineer or architect) who should be placing his or her seal on the plans as well as providing complete design calculations to verify the work being produced.

Failure to design for wind loads can only result in the eventual failure of buildings, hopefully without loss of life and/or limb.

Pressure Treated Posts: 1807.3.1

Not near as exciting as 867-5309, but this one Section of the International Building Code (IBC) is one of the most important and least understood sections.

The American Wood Preservers Association (AWPA) addresses in, Section UC4 wood, which is pressure preservative treated for “Ground Contact”. The “UC” is short for “Use Class”.

UC4A is for “General Use”. This is “Wood and wood-based materials used in contact with the ground, fresh water, or other situations favorable to deterioration. Examples are fence posts, deck posts, guardrail posts, structural lumber, timbers and utility posts located in regions of low natural potential for wood decay and insect attack.

UC4B is for “Heavy Duty”. This is “Wood and wood-based material used in contact with the ground either in severe environments, such as horticultural sites, in climates with a high potential for deterioration, in critically important components such as utility poles, building poles and permanent wood foundations, and wood used in salt water splash zones.”

Neither of these clearly identifies which degree of pressure treating should be utilized for structural in ground use – to support a post frame (pole) building.

When the first IBC was published in 2000, Section 1805.7.1.2 stated, “Wood poles shall be treated in accordance with AWPA C2 or C4. This language remained the same in the 2003 IBC. The AWPA C2 and C4 standards have been withdrawn, therefore are no longer applicable or referenced standards in later editions of the Code.

In the 2006 IBC, however, things changed. Section 1805.7.1 states, “Wood poles shall be treated in accordance with AWPA U1 for sawn timber posts (Commodity Specification A, Use
Category 4B) “. In the 2009 IBC (and repeated for the 2012 edition), the language remained the same, however the referenced section of the Code is now 1807.3.

What does this mean for the average consumer who is shopping for a new pole barn? Everything!

Visit the local lumberyard, or big box lumber store. Take a walk through the pressure treated lumber department. Every piece of pressure preservative treated lumber has a tag on it. This tag identifies who the pressure treater was, as well as the level of pressure treating. Sadly, most of the pressure treated posts will be treated only to UC-4A….which does NOT meet with the Code requirements for use in pole buildings! It is very likely the lumberyard sales people do not realize this to be the case.

Even more frightening, most Building Officials are unaware of this requirement!

When shopping for a new pole building, ask what level of pressure treatment the pressure treated posts are treated to. If the company being contacted does not know, will not tell, or says they are “treated for structural in ground use” (or similar language), or anything other than UC-4B…run, do not walk away!

In order to have a Code conforming building, and one which will last the lifetime it is designed for – demand a minimum UC-4B pressure treating level for all structural load bearing columns.

Wind Exposure & Confusion

If you are a registered design professional, or a building official, then you are trying to make sense out of this subject on a daily basis. Most people who are selling buildings (either constructed or kit packages), tend to ignore wind exposure, or pretend it somehow doesn’t exist.

For sake of utter confusion, I’ll list the sections of the code (just in case you need some “put me to sleep” late night reading material.)

(HINT: At the end, I include a broad generalization which should give a close idea for most building sites.)

Picture entering a portion of the code book, which resembles a surrealistic painting by Salvadore Dali.

Section 1609.4‐‐Exposure Category: includes three subsections but determination of exposure is not relegated to a nice, comfortable chart or table. The main part of this section explains variations of the roughness of the ground from the natural topography and vegetation need to be take into account when determining Exposure Category.

Section 1609.4.1‐‐Wind Directions and Sectors is the first item for determining Exposure Category, but the process is three‐step from this point. Breaking the babble down to something which makes sense isn’t easy, but a list helps:

1) Select wind direction for wind loads to be evaluated

2) Two upwind sectors extending 45° from either side of the chosen wind direction are the markers

3) Use Section 1609.4.2 and Section 1609.4.3 to determine the exposure in those sectors

4) The exposure with the highest wind loads is chosen for this wind direction

Got all this? If not, you aren’t the only one. But wait, there’s more!

To get the information needed, glance over Section 1609.4.2‐‐Surface Roughness Categories. In this section, roughness is broken down into three categories: B, C, or D. Summarized as follows:

1) Surface roughness B: Urban, suburban, wooded, closely spaced obstructions

2) Surface roughness C: Open terrain with few obstructions (nothing greater than 30 feet), flat open country, grasslands, water surfaces in hurricane‐prone regions

3) Surface roughness D: Flat areas outside of hurricane prone regions, smooth mud flats, salt flats, unbroken ice

Hold on, we still haven’t determined what the Exposure Category is.

In Section 1609.4.3‐‐Exposure Categories, we get the information we want. Exposure is based on the roughness determined earlier and once again broken into Categories B, C, or D:

1) Exposure B: Surface roughness B = Exposure B with these restrictions:

a) Roughness B prevails upwind for at least 2,600 feet or 20 times the building height (choose greater)

b) If the roof height is 30 feet or less, upwind distance is reduced to 1,500 feet

2) Exposure C: Exposure C shall apply for all cases where Exposures B or D do not apply

3) Exposure D: Surface roughness D = Exposure D with these restrictions:

a) Roughness D prevails upwind for at least 5,000 feet or 20 times the building height (choose greater)

b) Exposure D extends inland from a shoreline 600 feet or 20 times the building height (choose greater)

Is choosing an Exposure Category now clear?  If not, as a generality, roughness = exposure. Memorizing all the details isn’t necessary, but being able to recognize the letters is probably a good idea.

OK – so here is the “Cliff Notes” version – in generalized, simple terms:

Wind Exposure B is a site protected from the wind in all four directions, within ¼ mile, by trees, hills or other buildings. This would include building sites in residential neighborhoods and wooded areas.

Wind Exposure C is open to the wind in one or more directions, for ¼ mile, with only scattered obstructions generally less than 30 feet tall in the “open” direction. This would include building sites in flat open country, grasslands and ocean exposed shorelines in hurricane-prone regions.

Very few people actually have Wind Exposure D, which is the most severe exposure. It would be in areas with terrain which is flat and unobstructed facing large bodies of water over a mile or more in width. An example is the non-hurricane prone ocean shoreline or the Great Lakes.  I am always amazed when I get a request for a quote from someone claiming Exposure D…and they are in the middle of Kansas with not even a river, much less a lake within 100 miles!

I also have those folks who insist “the prevailing wind” comes from the one direction they have “protected”, so they want to claim Wind Exposure B – when the other 3 sides are basically totally exposed.  Which means they are really “out in the country”.  Exposure determination doesn’t care which side IS protected –just that all 4 sides ARE protected.  And, although it doesn’t hurt to claim a higher exposure “just to be safe”, it will cost more in many (but not all) cases.  When in doubt, stand on your building site and take photos in all 4 directions, and then take them to your building department for a wind exposure determination.  It’s always best to have your local Building Officials working with you from the beginning of your project.

Building Codes: Constructing over minimum standards

‘I want to see people build past minimum (code) standards’: Mike Holmes

In a June 29, 2011 copyrighted article in Postmedia News, Mike Holmes says, “Anyone who knows me knows I talk an awful lot about building code. The code is a minimum acceptable standard for the construction of a building. It’s also a living, changing document that is adapted every few years to ensure it keeps up with major changes to the ways buildings are built and the materials that builders use in construction.”

Holmes goes on to say, “Even if they are minimum standards, codes matter. I’ve said before that I’m not a fan of people who build to code because the building codes are minimum standards. I want to see people build past minimum standards, so that every homeowner has the safest possible living environment.”

Don’t just build to minimum code standards, plan to build above and beyond them!

In the case of pole buildings, we thoroughly agree with Mike Holmes. Sadly, we in the United States have many jurisdictions where building permits are either not required at all, or are granted without a thorough plan review and field progress inspections.

One of the largest post frame builders in the country, designs their non-permit required buildings to their own “robust” standard. To upgrade these buildings to meet code requirements involves a significant increase in price!

I am ever amazed, dumbfounded and totally appalled at clients who, after being advised of their wind and snow requirements, ask me, “What would it cost to build to lower values?”  Is throwing safety right out the window really worth saving a few bucks?

What most clients do not realize is that increases in building load carrying capacity often result in very minimal costs. A building with a low risk of human injury or death in the event of a failure (IBC Category I), is designed for the maximum design loads to be exceeded once in an average 25 year period. An upgrade to Category II doubles this to a 50 year period, with a net effective increase in snow load capacity of 25% and wind capacity by 15%.

Concerned about the lifespan of your new pole building? An increase of 10 pounds per square foot of snow load and 10 miles per hour for design wind speed means your building might very well be the last one standing, when it comes to a catastrophic event.  Don’t just build to minimum code requirements, plan to build above and beyond them, and sleep well at night knowing when you wake up, your building will still be there after a stormy night.

To receive more pole building tips and advice subscribe to the pole barn guru blog!

Verify, Verify and….Verify! Confirm Local Building Codes

Did I happen to mention verify?

So, you have a problem, or are trying to reach a goal – with the solution being a new building.

Now, with the solution in mind, what to do first?

Call around or shop online to get a price? Wrong answer.

Verify Building Codes

Verify Local Building Codes

The correct answer is to visit your planning and building departments to confirm local building codes, as well as what design criteria are to be followed.

Doing anything else, can end up burning up time for you, as well as anyone quoting your proposed project, besides leaving everyone with hurt feelings.

Every client who orders a new pole building from Hansen Buildings does so with these verification requirements:

“Purchaser acknowledges verification/confirmation/acceptance of all Building Code, Plan and Design Criteria included on Instant Invoice. Information Purchaser has verified includes, but is not limited to: Applicable Building Code version, Occupancy Category, Ground (Pg) and Flat Roof (Pf) Snow Loads, Roof Snow Exposure Factor (Ce), Thermal Factor (Ct), basic Wind Speed (3 second gust) and Wind Exposure, Allowable Foundation Pressure, Seismic Zone and Maximum Frost Depth, as well as obtaining for Seller any unusual code interpretations, amendments or prescriptive requirements for non-engineered buildings which could affect this structure.”

“Seller’s designs are all per specified Building Code and include the use of NDS Table 2.3.2 Load Duration Factors (Cd) as well as ASCE 7-05, Eq. 7-2 for slippery surfaces. Seller’s designs rely solely upon occupancy category and structural criteria for and at specified job site address only, which have been provided and/or verified by Purchaser. It is Purchaser’s and only Purchaser’s responsibility to ascertain the design loads utilized in this Agreement meet or exceed the actual dead loads imposed on the structure and the live loads imposed by the local building code or historical climactic records. Purchaser understands Seller and/or Seller’s engineer(s) or agents will NOT be contacting anyone to confirm.”

Sound like a lot of mumbo jumbo?  Not really – read on to find out how to make this simple.  And save yourself a lot of grief when you order a new building – of any kind!

We have a client who ordered his building in May under these very same requirements. The client confirmed they read and understood all of them when the order was placed.

Our engineer did his job, producing plans and calculations for the client, based upon the information client agreed to verify.

This morning client went in to apply for his building permit. The Building Official loved the engineered plans.  However the incorrect code version was on them (their jurisdiction has gone from a 2003 to a 2007 version) and the ground snow load on the design was 70 pounds per square foot (psf), and at client’s site it actually needed to be 105 psf! In the client’s particular state, for every 100 feet the site is above sea level, the ground snow load is to be increased by 2 psf, above the basic map values.

Client is not happy – and we are none too pleased.  We now have an unhappy customer before we have even shipped his pole building kit.  Added to this, redoing his plans is like starting all over for us.  And the fees we require don’t begin to cover the hassles of making all the changes.

However the onus for verification IS on him.

Now, why is it we or our engineer would not verify for the customer?

Here are some actual circumstances for past projects:

  1. A client gave an incorrect address for building site, resulting in wrong loads.
  2. We (or our engineer) have no way of knowing the actual elevation of where the building is to be situated. At times, a relatively small parcel of land can have hundreds of feet of elevation change (case in point – my own home is on a lot 60’ x 225’ with nearly 300 feet of grade change).
  3. County is contacted to confirm loads for an address, which they do. When client goes to apply for building permit, they find their address has been annexed by a nearby city (clients were sure surprised). The bad part – the “new” city was operating under an older version of the code and (even though entirely surrounded by the county) was using much higher snow load requirements.

According to Ben Franklin, “An ounce of prevention is worth a pound of cure”.

In all fairness to yourself and those, like us, who are trying to assist you in meeting your goals…..do your advanced verifications with your city or county’s Planning Department – confirm the local building codes and everyone will be far happier!

A Silly Extreme Example

I’m a voracious reader. A large portion of my daily reading is devoted to learning as much as I can about my industry and expanding my knowledge base.

On LinkedIn, I am a member of the “Truss, Panel & Building Components” discussion group. One of the members, Gene Marcoux, from Florida, had postulated, “If we have a chance to reshape the way things are going to be done, wouldn’t it make sense to have the whole structure engineered for structural integrity….”

I happen to personally agree with Gene’s statement. If a design professional did not do the structural design of your new pole building, then who did?

Building Code Book

IBC Building Code Book

Keymark Enterprises, Inc., of Colorado, provides structural engineering and precision manufacturing of wood components (such as trusses and wall panels). Their account representative, Steve Cummings had this take on the subject:

“In perhaps a silly, extreme example, think about a 20×24 garage on a farm in Kentucky. Right now there is no government check that it will conform to current code, no engineering requirement, no permit required, no inspection necessary. We all know, from experience and training, how to build this garage. What is the value of the increased requirements vs. the cost of building departments, inspectors, engineers and designers?”

In my humble opinion, while an industry expert may know how to properly construct this pole building, not everyone is an expert. All it takes is one error in the design of a connection (too few nails, nails too closely spaced, an incorrect hanger, etc.) or sizing of a structural member and a catastrophic collapse could be the result.

The Building Code purpose “is intended to provide minimum requirements to safeguard the public safety, health and general welfare through structural strength, means of egress facilities, stability, sanitation, adequate light and ventilation, energy conservation, and safety to life and property from fire and other hazards attributed to the built environment”.

In having no permit requirements, there is no one to insure the goals of the codes are met. Are we willing to sacrifice a life or lives, due to deficient design, all in the name of saving a few dollars?

Tornado Proof: Pole Buildings Can Limit Damage

Thanks to www.ocala.com May 24, 2011 for their article, “Florida Building Codes Limit Tornado Damage”

While surveying tornado damage in Tuscaloosa, Ala., University of Florida researcher David O. Prevatt said he was struck by the city’s large number of old homes susceptible to storm damage.

“We have to expect this sort of damage unless we decide to do something differently,” said Prevatt, an assistant professor of civil and Rural Tornadocoastal engineering.

Prevatt is the principal investigator of a research project documenting damage from the tornado that devastated Tuscaloosa last month. He’s planning to make a similar trip to Joplin, Mo., where one of the deadliest U.S. twisters on record struck Sunday and killed at least 116 people.

Prevatt believes that new building codes, like those instituted in response to hurricanes in Florida, could reduce some of the damage from tornadoes in those areas.

“We can probably save some damage and probably save some lives as well,” he said.

Hurricanes are a bigger concern than tornadoes in Florida, said David Donnelly, Alachua County’s emergency management director.

Florida, he said, doesn’t typically get the extreme twisters that have recently struck Alabama and Missouri.

“Florida as a whole doesn’t really see those type of tornadoes,” he said.

There are exceptions. In February 1998, violent tornadoes that swept across four counties in Central Florida killed 41 people. In 2007, 21 people died when tornadoes left a 70-mile trail of destruction across Lake and Volusia counties, including parts of The Villages.

Prevatt said the damage he saw in Tuscaloosa included buildings knocked off their foundations and homes where roofs were nowhere to be found. He made a trip last year to Hiroshima, so he can compare the devastation in Alabama to photos he saw of Hiroshima after the atomic bombing.

Tuscaloosa “really looked like a bomb site,” he said.

Prevatt and researchers from several other universities spent a week in Tuscaloosa documenting damage to about 150 homes. Their work is being funded by the National Science Foundation and International Association for Wind Engineering.

Now his attention is turning to Joplin, where more than 2,000 structures were leveled. He expects to travel there late this week or early next week, after conditions improve.

Modern pole building design allows for structures to be designed to withstand or reduce damage from tornado winds. Columns embedded into the ground eliminate the weak point of stick frame construction in the connection of walls to foundations. The embedment itself can be designed to withstand uplift and overturning forces for any desired wind speed.

Roof trusses can be attached directly to the columns using seven gauge steel brackets with through bolts. This connection eliminates another noted stick frame weakness – connecting trusses to wall top plates, which is typically done with either toe nails, or light gauge steel connectors.

The Florida Building Code has the most stringent wind requirements in the United States. The 29 gauge steel roofing and siding has Florida approvals to be used in hurricane regions. With appropriate spacing of framing members, this steel cladding, attached with properly placed diaphragm screws, will withstand even the highest recorded wind speeds.  Pole building designs may help to reduce damage and save lives.