Tag Archives: frost heave

Issues with Condensation, Ground Water, and Overhead Door Size

Today the Pole Barn Guru answers questions about, condensation, ground Water, and an overhead door size.

DEAR POLE BARN GURU: Good morning,

My name is Brett and about to complete my Hansen Pole building.

I have having issues with condensation from my metal roof given the recent freezing weather. I do have a vapor barrier, but is not stopping the condensation that is now dripping into insulation and drywall.

Can you help me with this? Need a resolution quick

Thank you

BRETT in ARLINGTON

vented-closure-strip

DEAR BRETT: Your building’s dead attic space lacks adequate ventilation. You need to replace closed cell foam closures currently under ridge cap with Vented ones. Cut out any radiant reflective barrier between ridge purlins. Make sure to have an inch or more of free flowing air above insulation closest to sidewalls, so as not to impede air intake from building’s vented soffits..

 

DEAR POLE BARN GURU: Does it make sense to build a pole barn on standard frost walls where ground water and subsequent frost heaves are a problem? JOHN in LANESBORO

DEAR JOHN: Ground water is going to be an issue no matter what you do. Frost walls are going to be very costly (https://www.hansenpolebuildings.com/2018/11/foundations-2/), and you’d have to find a way to keep water out of your excavations long enough to set up forms and pour.

I’d be wanting to build up grade at building site for any type of construction.

For further reading – https://www.hansenpolebuildings.com/2013/11/sonotube/ and https://www.hansenpolebuildings.com/2011/11/site-preparation/.

 

DEAR POLE BARN GURU: Can I install an 18 ft wide garage door in a 20 ft wide pole barn? WILLIAM in TOWNSEND

DEAR WILLIAM: With proper structural design, probably. There are some downsides of this application, however. You will be extremely limited in your ability to place anything along building sidewalls. Care will need to be given in opening vehicle doors so as not to smash them against each other, or sidewalls.

For an 18 foot wide sectional overhead door, I normally recommend a building width of no less than 24 feet.

 

Frost Heave, Sliding Door Dilemma, and Climate Control Plans

The Pole Barn Guru addresses questions about frost heave, a sliding door dilemma, and plans on climate control.

DEAR POLE BARN GURU: Hello. Do you have any information regarding how to avoid frost movement with Pole Barn Building designs in stony ground and cold climates such as Norway?

There is a building nearby that had moved in the thaw so would like to know if Pole Design is suitable or not. I could send a photo if needed.
(Maybe North US/Canada references will be ok as could be closest ground and climate to Norway.

Need to build asap to adhere to animal health regulations and forth-coming winter weather so any advice on this matter asap is appreciated. ANDREA in TELEMARK, NORWAY

DEAR ANDREA: My father’s family came to be United States citizens after arriving from Norway prior to 1900, so I have always had an affinity towards all things Norse. (A little snippet of my Norsk history here: http://www.hansenpolebuildings.com/2011/06/before-

 

the-pole-barn-guru/).

Post Frame (pole) buildings do very well in cold climates and frost heave can be avoided, given good preparation. Here’s a link to a series of three frost heave articles to get your building project properly directed: http://www.hansenpolebuildings.com/2011/10/pole-building-structure-what-causes-frost-heaves/.

 

DEAR POLE BARN GURU: How do I build a track to open a 12 foot wide x 14 foot tall slider over the top of a 12 foot wide x 12 foot tall slider? The north one opens to the south and the south one will open over the top of the north one. ALAN in SHELBY

Figure 27-5

DEAR ALAN: I am surprised this dilemma was missed by both whoever sold you your building and a RDP (Registered Design Professional – architect or engineer) who sealed your building’s plans. However, odd and interesting things do happen.

Laws of Physics prevent two objects from occupying same space and time. In order to have door sizes you have listed, sliding in directions desired, one of them would need to be placed inside of wall. This may be less than an ideal answer (not to mention adding to cost).

If sliding doors are your only design solution – it would be easiest to just make them each same height. Double sliding door tracks can then be used, with each door sliding upon its own track.

DEAR POLE BARN GURU: I am in the planning stage of my new post-frame building. One question I have concerns building practices. I am planning to heat and cool only my office which will be in one corner of the structure. The rest will be unheated. Are there differences in construction methods I need to be aware of to accommodate the conditioned and unconditioned areas? LONNIE in DAVENPORT

DEAR LONNIE: A consideration would be to design entire building to be able to be climate controlled, as you may decide to expand your office space, or building may be re-purposed in future and require some or all of remainder to be conditioned.

If you decide to only do your office space, then you can reduce these recommendations to area in question. http://www.hansenpolebuildings.com/2018/06/pole-barn-insulation-part-ii/.

 

 

 

 

Concrete Considerations from the PBG!

DEAR POLE BARN GURU: Is concrete included in price? TRACEY in SUMTER

DEAR TRACEY: No, we do not include concrete in the price and here is why:

Most familiar, as well as most available is the Sakrete® general purpose High Strength Concrete Mix. When mixed per the manufacturer’s instructions, this mix affords a compressive strength of 4,000 psi (pounds per square inch) at 28 days.

The instructions are: Empty the contents into a mortar box, wheelbarrow, or mechanical mixer. When mixing by hand, form a crater for adding water.  Add water a little at a time.  Avoid a soupy mix.  Excess water reduces strength and durability and can cause cracking. A 60 lb. bag should be mixed with three quarts of water, an 80 lb. bag four quarts.

Now the realities of using bagged concrete for post frame building footings….

treated postIt is not unusual to have concrete encasements of 24 inches or larger in diameter and 18 inches or more in depth, in order to prevent building settling and uplift issues. One hole this size would take 4.71 cubic feet, or about 700 lbs. of concrete! Even a very small building with 18 inches of diameter and depth takes 2.65 cubic feet or about 400 lbs. of concrete.

With either 60 or 80 lb. bags, it is going to take a lot of bags! An average building could easily have 20 posts, and if looking at 700 lbs. of concrete per post, we are talking about 7 TONS of concrete (3-1/2 yards).

Ignoring the huge number of bags involved, there are some other realities.

Ever looked at the pallets of readi-mix bags at the lumberyard? Take a peek, next time. Notice how many of them are broken or leaking.

Due to weight, it may very well mean another delivery and another delivery charge. Trucks do not run for free.

Bags can (and will) break when being handled during delivery, unloading and being moved around the jobsite. It is going to happen, just plan on it.

From experience, lots of projects are not begun immediately after delivery. It is not unusual for delays of weeks, or even months before actual construction begins. Improperly stored, bags can get wet or absorb moisture and become solid before time for use. This equals a total waste of money, other than the chunks of concrete make for solid backfill.

Then there are the builders who insist upon throwing the entire bag (usually including the bag) into the hole. Their idea is ground water will cause the readi-mix to harden. Why does this not resemble the manufacturer’s instructions?

Readi-mix must be mixed thoroughly and evenly. How does mixing over 200- 60 lb. bags of Sackrete® by hand sound? Add too much water (three quarts exactly per 60 lb. sack) and the strength is reduced.

Use too much? As holes are always perfectly round (not), it is going to happen.

Save time, effort and money. Often all three can be saved by having the local pre-mix concrete company deliver concrete for holes (even if a “short load” fee is charged), as opposed to mixing on site.

DEAR POLE BARN GURU: I am building a 36 x 40 pole barn and I’m on a grade that drops approximately 4′ over the span of the building footprint. A home builder friend, a structural engineer, and my concrete guy have recommended traditional foundation with wet set permacolumns, but the builder I’ve contracted with wants to set columns on footers 3′ to 5′ in the ground and not use the permacolumns. The pole barn builder doesn’t think I need a retaining wall and should just have an excavator level what i need with a slope off the back. Seems a retaining wall in the back is better, which my concrete guy will pour, but still recommends foundation to eliminate frost heave. Use for building is car storage and shop with a lift.
Thank you in advance for your time and help. CHRIS in ST. LOUIS

DEAR CHRIS: This reminds me of a joke I once heard – a home builder friend, a structural engineer and a concrete guy enter a bar…….

Oops, kind of off track!

Some of the answer is going to depend upon what you want your yard to look like.

In any case – the actual pad of the building is going to need to be properly compacted (emphasis on proper) so those costs will be fairly even in any case. You’ll want to be reading about proper site preparation and compaction here (it is lengthy): https://www.hansenpolebuildings.com/2011/11/site-preparation/

What might appear to be the least expensive would be to just order columns long enough to get the required embedment depth as shown on the engineered plans, then fill afterwards, sloping away from the building. In order to keep the fill from sloughing off, it will probably result in a slope next to your building which will stretch out as far as 20 feet. You could easily invest in several hundred yards of fill!! If you can live with the look, might be the answer.

Building on top of a foundation – this is going to be the most expensive and certainly not the choice I would probably be making. It is also going to be tougher to build upon, due to the height of the walls plus the foundation.

Which leaves – build a retaining wall. I like this idea. Columns do not have to be longer (as long as fill is properly compacted).

By the way – there is no reason for ANY of these versions to frost heave as long as the site has been properly prepared. Read more about how to avoid frost heave issues here: https://www.hansenpolebuildings.com/2011/10/preventing_frost_heaves_in_pole_building_construction/

DEAR POLE BARN GURU: How much is the drip stop application for labor/material? Usually it comes already attached to the metal paneling. Do you figure it by square feet? JOSH in MANKATO

DEAR JOSH: For materials you are going to be looking somewhere in the neighborhood of 53 cents per square foot of roof surface. As a builder, if you are anywhere it is typically windy, I am going to give you a decent discount on my labor for having invested in it, because I don’t have to fight rolls of insulation flapping in the breeze.

 

Pole Building Poor Workmanship

They Say a Picture is Worth a Thousand Words

There are not a thousand words invented to describe the true awfulness of this building.

To my loyal readers, I know I have occasionally ranked on pole building poor workmanship done by builders, however this one may very well rate close to the top of the “bad list”. I will share with you only this one single photo to give you merely a small sampling of how bad, bad can be.

This is the corner of the building. To the left of the corner is an endwall. According to the engineered building plans and the Hansen Pole Buildings Construction Manual, at the bottom of each of the endwall wainscot and endwall steel panels there should be a screw of each side of the high ribs.

Doesn’t appear to have happened as planned.

How could this be a problem? In the event of a severe wind event, there could be shear forces upon the endwall steel which are greater than the ability of the single screw to carry – worst case event, building falls down, goes boom. And it isn’t covered under warranty as the building was not constructed per the engineered plans.

In the picture are shown the base trim at the bottom of the wall steel. Done correctly, it should neatly wrap around the corner, nope – not on this corner. Which is probably a good thing (maybe) because the bottom of the steel on the two adjoining walls is not at the same height!

When the corner trim is eventually installed, another problem is going to crop up – the wainscot trim has not been properly held back to allow for the corners to be installed.

I know you have all been waiting for me to talk about the obvious……

Here it is……

The concrete around the top of the corner column.

It is supposed to be at the bottom of the hole. Properly located it will keep the building from settling, overturning and uplifting. This is pole building poor workmanship.

As it is installed, if there ever happens to be a frost issue, what is known officially as a “top collar” gives added surface for frost heave.

As my 23-year-old daughter Allison would say, “Face-wall, when face-palm just isn’t enough”.

Dear Pole Barn Guru: How to Replace a Sliding Door with an Overhead

New!  The Pole Barn Guru’s mailbox is overflowing with questions.  Due to high demand, he is answering questions on Saturdays as well as Mondays.

Welcome to Ask the Pole Barn Guru – where you can ask questions about building topics, with answers posted on Mondays.  With many questions to answer, please be patient to watch for yours to come up on a future Monday or Saturday segment.  If you want a quick answer, please be sure to answer with a “reply-able” email address.

Email all questions to: PoleBarnGuru@HansenPoleBuildings.com

 

DEAR POLE BARN GURU: Have pole barn with sliding doors which are being wedged with weather changes. Looking for overhead door option for door that is 16′ wide and 12′ tall. Do you provide these and conversion labor to install? LOOKING IN LEBANON

DEAR LOOKING: Switching from sliding doors to an overhead door is going to pose a massive challenge to do correctly. This, in itself, is reason enough to spend the generally few dollars up front to use a sectional steel overhead door.

To begin with, the openings are not framed to the same size. It is easier to frame smaller than have to try to hack out and replace one or more columns. This will probably entail framing down to a finished hole 13’10” in width and 10’11” in height (measured from the top of the concrete floor) and installing a 14’ x 11’ residential overhead door. In order to get things looking right from the outside. All of the steel on this wall should be replaced, to give uniform color and no splices.

We can certainly provide a wall’s worth of steel siding, color matched powder coated screws, the appropriate steel trims, the overhead door and hardware to hang it. We are not contractors in any state, so we do not and cannot provide any labor to install.

You may want to look at what the real problem is – sounds like you have frost heaving, which is pushing the ground, or concrete, up at the location of the door. Just switching doors is not going to take away the problem.

If heave is the root cause of the problem, then remedial action can be taken by installing a French drain along the side of the building in front of the door. The sliding doors can also be taken off, and their overall height shortened enough to keep them from binding when the heave occurs.

DEAR POLE BARN GURU: How do I calculate what size of purlin I need based on my snow load, and the bay spacing of my pole barn? Thanks. CURIOUS IN CULDESAC

 

DEAR CURIOUS: From the ground, a roof purlin looks pretty simple – it is usually a piece of 2x material, fastened on top of or attached to the side of rafters or roof trusses. Roof sheathing (typically OSB – oriented strand board, plywood, or steel roofing) is then attached to the top of the purlins.

Purlins are not simple at all. They must carry all applied dead loads, live loads from snow as well as wind loads. They need to be checked for the ability to withstand bending forces (both compressive and from uplift), to not have too much deflection and be adequately attached at each end.

In snow country, purlins near the roof peak need to be checked for the added drift loads which are applied.

I could spend several thousand words and numerous pages to teach you how to be able to properly calculate the purlins for your individual case, however it is far more information than the average person wants to, or is able to, absorb.

The best recommendation – hire a registered design professional (RDP – architect or engineer) who has the ability to run the calculations to adequate design your purlins based upon the climactic (wind and snow) loads being imposed upon them at your building site. Or better yet, order a complete pole building kit package which has been designed by an RDP.

Dear Pole Barn Guru: Will a Drain System Hurt My Piers?

Welcome to: Ask the Pole Barn Guru – where you can ask questions about building topics, with answers posted on Mondays.  With many questions to answer, please be patient to watch for yours to come up on a future Monday segment. 

Email all questions to: PoleBarnGuru@HansenPoleBuildings.com

DEAR POLE BARN GURU:

I have a 40′ L X 30′ W metal pole barn, which has a 10′ overhang.  Basically the foot print is 40 X 40.  The roof has a 6/12 pitch that is connected to the overhang roof, which transitions to about a 3/12 pitch.  I live near Buffalo, New York and have a problem with gutters on the overhang.  Every year the snow wants to pull down the gutters.  I don’t really like the idea of putting up snow jacks because it’s just more holes that I’m putting in the roof and I feel like I would be compromising the integrity of the roof over time.  I have read about the use of French drains and though I would just eliminate the gutter on that side and install a French drain.  I’m wondering if I “opened up a can of worms” and would be causing more problems than it’s worth.

I dug a trench about 18″ wide and 24″ deep along the side of the pole barn.  My plan is to place #2 clean washed stone with perforated SDR35 pipe in the trench leading out to ground level on the slope behind the barn.  The drain pipe will be wrapped with a filter sock and the stone surrounding the pipe will be wrapped with designed trench filter paper.  This should prevent silt from entering both the stone and also the pipe.

My concern is not so much with the design of the French drain, it is more with the pole barn piers.  Will I be compromising my piers with this drain system?  When I dug the trench I went down about 2′ next to the footings all along the one side.  Am I now creating a frost or heaving problem with those pier footings?  I would appreciate your help before I create a problem here.  Thanks. Darien Dan

DEAR DAN: Without having a geotechnical engineer personally visit and inspect your building site, I can only give generalized answers, so here goes….

Will you compromise your piers with this drain system – it is possible. The extra water being added into the ground system could cause not only frost heave issues, but could also contribute to settling of the columns. Besides potential frost heave and settling issues – the drain system is not probably overly economical in either time or cash outlay.

Provided your roof system was properly designed for the added weight, there are several polycarbonate snow retention systems for roofs which will not cause you to have to put any more holes in your roof. A special adhesive is used to glue the snow guards to the steel roof surface. Once installed, snow should adequately stay on your roof, keeping the gutters where they belong, instead of on the ground next to your building.

 

DEAR POLE BARN GURU:  Can fink truss 6″ pitch  and 24 ft span  be on 2 ft centers. Inquiring in Arkansas.

DEAR INQUIRING: In background – a “fink” style truss is one in which the interior truss members (or webs) are in the shape of a “W”. In some cases, it is referenced by the number of “panels” (spaces between the truss webs) from one side of the truss to the other. In the case of a fink truss, the top chord would have four divisions, the bottom chord three.

A 6” pitch is one where the sloped top chord of the truss, gains six inches vertically, for every 12 inches of horizontal movement.

As to whether your span, slope and spacing combination will work or not, would depend upon the design loads which the truss is expected to carry. These loads include sloped roof snow load, dead loads from roofing, sheathing, insulation, ceiling materials, etc., as well as wind loads.

To be safest, take your complete building plans to the prefabricated wood roof truss manufacturer of your choice and they should be able to use this information to design and quote the project.

Pole Building Footings and Frost Depth

“Except where erected on solid rock or otherwise protected from frost, foundation walls, piers and other permanent supports of buildings and structures larger than 400 square feet in area or 10 feet in height shall extend below the frost line of the locality, and spread footings of adequate size shall be provided where necessary to properly distribute the load within the allowable load-bearing value of the soil.”

Yeah, right….and what did this tell you?

Frost heave can do nasty things to pole buildings with improper or inadequate footing designs. When pressure preservative treated columns are embedded to an inadequate depth, or are encased in concrete where the holes are conical (wider at the top than at the bottom), they can be prone to heave.

In winter, ground freezes from the top of the soil downward. The depth of frost penetration depends on soil type, the severity of the winter, the amount of water in the soil and depth of an insulating blanket of snow.

The frost depth varies by region. In frigid northern climates, the frost depth can be 60 inches or more, whereas a warmer southern state frost may not even be an issue.

Your local building department can be called and asked what the frost depth requirement is. Then dig the footing holes so that the bottoms of the pole building footings are at or below the frost depth.

The mechanics of frost heave are complex, but here’s a quick primer. Water in the surrounding soil collects and freezes into thin layers of frost called “ice lenses.”

When water freezes, it expands (think of how ice cubes have a dome shape above the original water level in the ice cube tray). Ice exerts a pressure of about 50,000 lbs. per square inch—enough force to lift even a large building. A pole barn on inadequate footings doesn’t stand a chance.

The reason buildings don’t always return to their original height is that surrounding dirt sometimes fills in under the footing while it’s lifted.

Heavy clay soils don’t drain well, so they tend to have more frost heave problems than sandy, well-drained ones. But even if pole building footings are deep enough, ice lenses can latch onto the rough surfaces of wood and concrete and lift footings and posts from the side. This potential problem can be alleviated by increasing the diameter at the bottom of the holes.

Bottom line: make sure your pole building footing design extends below the frost line.  Frost acts randomly, so unless you are planning on selling tickets to “pole building at a slant”, make sure your building stays…exactly where you put it.