Tag Archives: Stem wall

Labor Costs for a New Barndominium

Labor Costs for a Post Frame Barndominium

In my humble opinion, an average physically capable person who can and will read instructions can successfully erect his or her post frame barndominium. This is a great place to save money (provided time is available) and most people frankly will end up with a better finished home!


Because you care – you have “skin in the game”.

Reader JOHN in NIXX writes:

“We are interested in building a home. It’s crazy but I’m not sure what to call this structure

Long story short we started out investing a pole frame residence. Decided not to go w slab on grade due to our physical condition and walking on concrete. 

I’m thinking we are going to build a 3-4’ stem wall or crawl space w/ 2×6 exterior walls. With trusses 6/12 pitch   Metal roof and 3 sides metal. The front could be red cedar siding.

MoneyWe are building in a remote area and the trades are difficult to come by. I received a recommendation of a person who has been building fence for 20 years. He organized 2  Amish crews that have built 2 large pole barns. They set poles and framed in with 2×6 exterior walls. When we spoke about pricing I was told it would be $4.50 a sq foot. I have framed stick build for a lot  less in the past. A local subdivision in the area is paying $3.50 a foot for stick built houses. My question is how do I determine if that is a fare price. I’m having a difficult time seeing how that price is valid.  What am I missing?  Any input would be appreciated.   The zip code for the new build is 65571. Thanks.”  

Mike the Pole Barn Guru responds:

Nationally framing a standard 2,100 square foot stick frame house will cost $9,030 – $17,220 or $4.30 – $8.20 per square foot for labor. A crew of five should be able to complete work and pass framing inspection within 2 – 3 weeks. Contractors typically will estimate garage area at 15 – 20% lower rate than living space.

If you are hearing $3.50 per square foot for framing labor, it sounds like they either work too cheaply or houses being built are extremely basic. Keep in mind, stick frame labor does not usually include siding or roofing installation and never includes hanging overhead doors.

Most usually a fair market price for post frame shell erection labor is approximately 50% of an engineered post frame building kit price.

With post frame construction, you can have engineered an elevated wood floor supported by building columns, eliminating a huge expense of pouring a concrete footing and stem wall.

Remember – cheap is rarely good, and good is rarely cheap.

Meeting Barndominium Perimeter Slab Insulation Requirements

Meeting Barndominium Perimeter Slab Insulation Requirements

Our world (at least my world) of post frame buildings has evolved quickly into residential construction of barndominiums, shouses (shop/houses) and post frame homes. Having built two shouses for myself, I have learned a lot about what to do and not to do, as well as receiving helpful contributions from thousands upon thousands of loyal readers such as JOE in BEDFORD who writes:
“Long time reader, first time poster. I’m in the middle of planning & prepping to build a post frame house (48′ x 60′ x 10′) for myself & I have some basic questions on how
to meet both the IRC & IECC codes for the foundation/floor systems. In PA (climate Zone 5) how is it possible to continuously insulate the “footings” (down 3′ – 4′) of my barndominium to prevent frost heave/moisture intrusion/etc? Wouldn’t that require digging a continuous “footing” thus defeating the main purpose of a post frame design?

To add to that thought, most “floors” of post frame houses are slab on grade concrete (with radiant heat in slab I assume), which to meet the IECC code for a heated on grade slab, it requires R-15 down 2′ on the slab edge (plus R-10 for the underslab insulation). See link below:

>From my understanding, the savings & efficiency of post frame houses comes from not having to excavate, pour & then backfill a continuous footer + stem wall (or footer with a slab on grade floor). How is it possible to meet these challenges & codes with a post frame design method? If you have to excavate a continuous footing & then insulate the footing & the house floor is going to be insulated & poured either way, wouldn’t the “stick frame” method be more cost effective at that point then?

Thanks for the help & clarification!”

Mike the Pole Barn Guru responds:

Appreciate your being a long time reader, hopefully you have found my articles to be informative and entertaining.

Thanks to glories of rigid board insulation, you can still do standard embedded columns, pour a slab on grade and meet insulation requirements to prevent both frost heave and to keep from having to heat ground outside and underneath your building (see drawing). Requirements for insulation and thickness can be found here: https://www.huduser.gov/publications/pdf/fpsfguide.pdf.

Even if you were to opt to pour a continuous footing, post frame construction will still prove to be more cost effective due to elimination of redundant members and structural headers inherent to stick construction. Post frame is easier to super insulate (fewer members touch both exterior and interior surfaces), you can create some unique architectural features not easily done with stick frame construction and you can easily DIY it should you be so inclined.

Concrete Floor Thickness for Heavy Equipment

Concrete Floor Thickness for Heavy Equipment

Reader KRIS writes:
“Dear Guru,
My husband and I are getting ready to construct a pole barn 40 x 80. He wants 2 x 14′ doors, 1 x 10′ and a service door. It will be used for heavy equipment storage and workshop/florist shop to keep critters out.
We had a contractor recommend a 6″ floor and 4 ft cement walls which I’m guessing drives the price up substantially. My husband thinks the floor should be more like 10″. An excavator, track loader, 9n tractor, and UTV/ATV will be stored.
We will want to heat the 2 workshops.
I don’t even know where to begin. What do you recommend?

Mike the Pole Barn Guru responds:

Unless there is far more to this than I am seeing, there would be no practical reason to have a four foot high concrete wall. Perhaps he is thinking of a foundation (below grade) wall, rather than an above grade wall.

Starting with floor thickness….to give a perspective 60% of the U.S. Interstate Highway system has 11 inch thick concrete. From the PE (Professional Engineer) Civil Exam, in Basics of Concrete Pavement Thickness Design, the thickness depends upon traffic load, subgrade and climate, but city streets, secondary roads and small airports are typically four to seven inch thicknesses). This leads one to believe a 10″ thick slab would be perhaps excessive.

What is going to make the biggest difference in the success of your concrete floor will be the gradework which is done underneath. You will want to read this series of articles, which begins with https://www.hansenpolebuildings.com/2011/11/site-preparation/.
I’d invest my dollars in the preparation of the site, rather than pouring lots of dollars into an overly thick slab which is over a poorly prepared subgrade. Six inches of thickness should be more than adequate for areas where heavy equipment will be driven and parked. For lesser loads, four inches.

Now let’s talk about the perimeter. If a foundation stem wall is being considered, I’d recommend using the Frost-Protected Shallow Foundation design, which you can get details on here: https://www.hansenpolebuildings.com/2016/11/frost-protected-shallow-foundations/. Using this eliminates the need for foundation walls, plus provides an energy efficient insulation solution, while reducing the possibility of frost heaves.

For heating, you should consider radiant floor heat – at the least have PEX tubing placed in the floors: https://www.hansenpolebuildings.com/2016/08/pex-tubing/.
Please take the time to browse our website for more articles on the design of energy efficient post frame building walls and roof systems.

Flood Rebuilding, Retrofitting Stem Wall, and Platinum Engineering

DEAR POLE BARN GURU: Hi. I am an architect with a flood victim client in Houston whose 1500 sf house must be rebuilt 5′ above grade. C panel, aluminum sliding windows/doors, low budget. Is it crazy to think they could buy a custom kit from you and have a crew from MN install it in January when said crew needed a winter break ? Attached images are just place holders to show elevated frame. Thank you. STEPHANIE in SAN ANTONIO

DEAR STEPHANIE: We can certainly get the house designed and delivered for your client, however we are not building contractors. Our buildings are simple enough so the average person who can and will read instructions in English can certainly erect the structural portions of their new home – and do a better job than the majority of building contractors.

With a high degree of certainty, you (or your client) could run an ad in Craigslist and get a builder from the great white north to travel to put the building up, if the client is not so inclined.

Vinyl windows are going to be about the same price as aluminum and will be far superior in performance. Our goal is to offer the best possible value for our client’s investment, so it is very probable we will prove to be a good fit.



Mom and I have a existing metal pole barn with no foundation – just dirt. We need to convert it to a work room with a raised pier foundation inside a concrete ”curb”. So my question is, what do we use to insulate/separate the concrete from the side of the metal walls?
Thank you sooooo much! ANNIE and MOM in AUSTIN

Dear ANNIE and MOM: It sounds to me like your idea is to have an elevated wood floor inside your building. If this is the case, the floor can probably be constructed by the attachment of beams to the building columns and running joists in between them. The question will be what needs to be added to your building (if anything) to provide for structural adequacy.

As an alternative, you could pour concrete stem walls (curbs) between the sidewall columns and as needed inside the structure. This is going to entail far more expense as well as work. Stem walls along the perimeter should be able to be isolated from the wall steel by pouring against the pressure preservative treated skirt board (splash plank) at the base of the walls.

In either case, a Registered Design Professional (RDP – architect or engineer) should be hired to do a field analysis of your building to determine both the adequacy of your building as well as to design the solution for you.


DEAR POLE BARN GURU: How much does the platinum engineering package cost? DAN in VIRGINIA BEACH

DEAR DAN: The Hansen Pole Buildings Platinum Engineering Package includes adding elevation drawings (showing the siding) to the standard structural engineering package which is included with your investment in a new Hansen Pole Buildings complete post frame building kit. The extra investment is nominal and can be obtained for your specific building upon request to your Hansen Pole Buildings’ Designer.