Tag Archives: glulaminated column

Tin Sheet Ceiling, Glulaminated Columns, and Wood on Grade

This week the Pole Barn Guru answers reader questions about adding tin sheets to the underside of trusses with insulation added, the use of glulaminated columns over rough sawn 6×6’s, and pros and cons of wood on grade vs concrete.

DEAR POLE BARN GURU: I am looking at installing metal sheeting on the ceiling in my pole shed. I would like to screw the tin sheets to the underside of the trusses. I do plan on adding about 18 inches of insulation on top of the metal ceiling. Do I need to install purlins to fasten the tin to for extra support of the tin sheets? Thank you. KEVIN in MANSFIELD

DEAR KEVIN: I know of several builders who would think nothing of screwing steel liner panels to truss bottom chords spaced eight and even nine-foot on center. Personally, I feel like there is going to be some noticeable deflection at those spans, especially as liner panels tend to run towards 29 gauge’s thin side. It is also, obviously, going to depend upon what is being used for insulation. Blown in fiberglass is very light, cellulose or rock wool will be roughly three times as heavy.

In summary, my comfort zone for liner panels is probably in having supports every four to five feet.


DEAR POLE BARN GURU: I am looking to build a post frame home utilizing wet set brackets. The cost of laminated 4 ply 2x6s is quite a bit more than solid 6×6 posts. What are the big differences between the two that I should be concerned with? Is one more structurally sound than the other? Thanks! NORMAN in WELLS

DEAR NORMAN: Actually, a typical 3 ply 2×6 true glu-laminated column, will be stronger than a solid sawn 6×6. This is especially true in Western states where solid sawn columns are typically Hem-Fir. Hem-Fir has a lower Fb (fiberstress in bending) than many other popular wood species. Now, some good news for you….Hansen Pole Buildings is expanding to provide metal connector plated trusses, as well as lumber and glu-laminated columns. In buying direct from a well-respected sawmill for lumber and a glu-laminated column manufacturer, we are cutting out scores of middlemen, resulting in us being able to deliver better quality materials, with shorter lead times and at competitive prices. Pricing should be available in roughly 30 days with deliveries to begin around mid-May.


DEAR POLE BARN GURU: I studied intently your post about wood on grade floor as an alternative to concrete hydronic slab on grade. Also reading elsewhere about radiant hydronic ceiling using 2′ wide thin panels (Messana.tech) that could install nicely onto ceiling purlins/girts 24″ o.c. on bottom chord of trusses. Do you have any thoughts about that combo to create an affordable 3BR 1250-1500 ft2 pole frame house at rural IA-MN zone 6. New houses within 25mi radius of Roch MN that size sell well at $250K or up. But when median household incomes in small towns like ours are at $50K, that is NOT affordable. Only farmers moving to town can afford a new stick built for $300K or more. BRIAN in LEROY

Gambrel roof pole barnDEAR BRIAN: I find concept of a plywood floor as opposed to slab-on-grade very appealing personally. Many years ago I lived in one side of a rental duplex in Coeur d’Alene, Idaho. I mention it as this duplex had radiant ceiling heat. It was fabulous as long as you were not under something (like your legs when sitting at a table). As heat rises, I would look towards radiant floor heat as my first choice (have it in our barndominium on South Dakota side of Lake Traverse). Fully engineered post frame, modest tastes, totally DIY, move in ready, budget roughly $70-80 per sft of floor space for living areas, $35 for all others. Does not include land, site prep, utilities, permits. If you hire it all done by a General Contractor, expect to pay 2-3x as much.

A BONUS PBG for Friday May, 17th– Roof Insulation, Column Sizing, and a Moisture Issue. 

A BONUS PBG for Friday May, 17th– Roof Insulation, Column Sizing, and a Moisture Issue.

DEAR POLE BARN GURU: Hi Mike. I built a post and beam shop and am trying to figure out how to insulate the roof on the second floor. The bents are true sawn 6×6 on ten foot centers (building is 40 feet long and loft is 16 feet wide). I used true 4×4 purlins on top of the 6×6 bents. I put 5/8 OSB over that, underlayment, then metal on top. I put a ridge vent system in. Now I’m looking at insulating the roof from the inside. I really have no air passage ways as the purlins run horizontally. My thought was to use 3 inch owens corning foam leaving a one inch gap to the OSB. I read your piece on closed cell spray foam for unvented roofs but mine is already vented. Can you give me any advice please? Thank you. MATT in ATHOL

DEAR MATT: While your idea is noble, it is impossible to place foam boards to completely eliminate warm, moist air from getting through cracks and seams. Eventually moisture will be trapped against underside of your OSB and there the fun (not really) begins. You really need to block your ridge vent and use closed cell spray foam. This article is in regards to another person in a similar circumstance: https://www.hansenpolebuildings.com/2023/10/properly-insulating-between-roof-purlins/


DEAR POLE BARN GURU: I am planning to build a 48 x 48 Monitor style pole barn that I intend to use for RV storage in the middle and living space above the center section. Will 6″ x 6″ posts be adequate spaced 12 ft apart or should I use 8″ x 8″? TIMOTHY in MARION

DEAR TIMOTHY: Your building columns will be sized by our engineers based upon building heights and loads carried. I would suspect our 3 ply 2×6 glulaminated columns produced from 2400msr lumber (roughly 50% stronger in bending than any other readily available columns) will be likely to adequately carry imposed loads.


DEAR POLE BARN GURU: When vinyl backed fiberglass insulation is installed on a metal roof, and is enclosed with rib closures and the roof extends 2″ over the purlin, should water still be able to reach the fiberglass? If so, should the fiberglass be replaced? Would this be something the contractor would be responsible for? Thank you. MARY in GREENEVILLE

DEAR MARY: Properly installed water should not reach fiberglass. If you see any fiberglass at juncture of wall and roof steel, then it was not properly installed. During installation, last roughly four inches of fiberglass should be removed from vinyl, then vinyl folded back over fiberglass. Folded edge should be even with outside of beveled eave strut (eave girt/purlin). If improperly installed contractor should at the least remove roofing to allow fiberglass to dry, then reinstall correctly.


NEW Hansen Pole Building Roof Supporting COLUMNS

NEW Hansen Pole Building Roof Supporting COLUMNS

Since Hansen Pole Buildings’ inception we have primarily provided solid-sawn timbers for roof supporting columns. Due to cost and availability challenges, we have only included true glu-laminated columns, when required by structural necessity or as a request from our clients.

Now solid-sawn columns have not come without their own set of challenges.

Pressure treatment: go visit your local big box store or lumber dealer and take a gander at treatment tags on their 6x6s. In order to be used structurally in ground, Building Codes require them to be UC-4B rated. In most instances, what is ‘on hand’ is only UC-4A and has 1/3rd less treatment chemical retention than what is mandated by Code. Usually UC-4B has to be special ordered (along with ‘special’ higher pricing) and results in lengthy delays. Cut off an end of a pressure treated 6×6 and not treatment chemicals do not penetrate completely. In an ideal dream world, where lumber does not check or split, this would not be an issue – however we do not live in such a world.

Strength: bending strength is a product of Sm (Section modulus – depth squared x width divided by six) multiplied by Fb (Fiberstress in bending). Sm for a 6×6 is 5.5 x 5.5 x 5.5 / 6 = 27.729. Fb for #2 SYP (Southern Pine) posts and timbers is 850, while #2 Hem-Fir (found in Western states) is 575 x 0.8 (this is Ci, incising factor read more here: https://www.hansenpolebuildings.com/2014/08/incising/) = 460.

27.729 x 850 = 23,570, while 27.729 x 460 = 12,755. More about this later in this article.

Weight: Pressure preservative treated timbers are not kiln dried after treatment. They have been thoroughly saturated with water borne chemicals. It is not unusual for a pressure treated 6×6 to weight 15 pounds per lineal foot (making a 20 foot long timber 300 pounds)!

Dimensional stability: as these timbers naturally dry, they tend to do things like warp, twist and split. None of these make for an ideal end use product.

What about glu-laminated columns?

Pressure treatment – each individual 2x member (or ply) is treated completely through. As SYP is being treated, wood does not have to be incised. All treatment meets UC-4B requirements and kiln drying after treatment makes each member capable of being FDN (Permanent Wood Foundation) rated.

Strength – most glu-laminated column producers have 3ply 2×6 columns rated at a Fb of 1900. Hansen Pole Buildings felt, if we were going to provide all glu-laminated roof supporting columns to our clients, we wanted to offer absolutely strongest columns, without question. We negotiated n exclusive contract with Richland Laminated Columns, LLC of Greenwich, Ohio, to produce our columns from ultra high-strength MSR (Machine Stress Rated read more here: https://www.hansenpolebuildings.com/2012/12/machine-graded-lumber/) lumber. This results in an end product with a Fb value of 3000 or 157% stronger in bending than what is typically found elsewhere!

Because finished dimensions are after planing, our 3 ply glu-lams have a Sm of 18.058. Take this value times 3000 = 54,173 or 229% greater in bending strength than a 6×6 #2 SYP and 424% greater than #2 Hem-Fir. Rather than having to use 6×8, 8×8, 6×10 or even 6×12 columns, these 3ply 2×6 columns will often replace them and STILL BE STRONGER!

Weight: a 3ply 2×6 glu-lam, having been dried to 15% or less in order to be able to be glued, weighs just over five pounds per lineal foot. This makes a 20 foot long column nearly 2/3rds less in weight than a 6×6!

Dimensional stability: with proper storage and handling, glu-lam columns remain straight without warp or twist.

But aren’t these glu-lams going to be EXPENSIVE?

No, we found by contracting to purchase a minimum of a quarter-million board feet of glu-lams, we were able to cut costs by as much as 75% or more (depending upon market) below what we had been paying for them previously. Our cost is now even far below what we had been paying for solid-sawn 6×6 columns! In fact, what we saved on columns alone, more than pays to have entire building packages shipped to most continental United States locations!

By investing in huge quantities, we now have inventory on hand to fulfill most building orders immediately and even custom dimensions in a matter of weeks.

Call 1.866.200.9657 TODAY to participate in “The Ultimate Post-Frame Building Experience”.

And, don’t forget to watch for our next article!

Stucco for My Post Frame Home

Stucco For My Post Frame Home

Reader SHAWN in WASHINGTON writes:

“I’m about to build a 110’x 50′ pole frame house using sono tube piers and wet set brackets. I am wanting to use the 1 coat (lighter weight) stucco on full exterior my question/ concern is what options do Ii have for my grade board contacting earth and also the transition of bottom of stucco on face of grade board? I have so much money in my land that I was really trying to save by not pouring a footer. Galvanized metal grade board? Wrap bottom and face of grade board with a custom j metal trim? Want it to be appealing to the eye with stucco stopping a few inches above ground level and just a few inches of grade board showing. Just want my grade board to last longer than 30-40 years since I will have roughly $600,000 in my house. My initial house design, but have changed it to stucco only with no rock more like other photo.”

Mike the Pole Barn Guru says:

Of concern with your use of stucco, in general, is limiting wall deflection to L/360. This can be accomplished, however it will often require larger dimension and/or higher graded wall columns (often glulaminated). Wall girts will need to be bookshelf style. In order to confirm deflection limits are indeed adequate, your post frame home’s structural plans should only be designed by a Registered Professional Engineer. Failure to meet this high degree of frame stiffness will result in failure of your stucco.

Successful stucco installation obviously requires a solid substrate (typically OSB or plywood). Either of these must be no closer to grade than six inches, unless properly pressure preservative treated (or a material otherwise impervious to decay). You might want to consider sheathing lower four feet of your wall with Foundation Rated (FDN) CDX plywood or cement board, so you can run it even down to grade, if desired.

Your grade board (splash plank) can be special ordered as UC-4B pressure treated. This level of treatment is good in the ground for longer than anyone alive on our planet to witness it failing. Our clients, who have been using stucco, have merely finished the bottom of it with a weep screed and called it a day. In all reality, no one except you is ever going to look at or notice how this is detailed.

Spray Foam, Crawl Space Floors, and Column Sizes for Shed

This week the Pole Barn Guru answers reader questions about spray foam application of a vapor barrier, finishing a crawl space floor, and to go with 3 ply or 4 ply columns– this is dependent upon many things.

DEAR POLE BARN GURU: New Construction – Can spray foam insulation be spray over a vapor barrier blanket in the roof of a pole barn, too increase insulation rating?


DEAR TERRY: In your part of our world, most often roof condensation is controlled by use of what is known as a “Condensation Control Blanket” – a thin layer of fiberglass bonded to a white vinyl backing. When laps are properly sealed (rarely done right) it does make for an effective vapor barrier, although it provides minimal, at best, insulating value.

I am not a fan of spray foaming to any flexible barrier in walls or roofs (https://www.hansenpolebuildings.com/2020/04/spray-foam-insulation-3/).

My first choice would be to design your building to be capable of supporting a ceiling, use raised heel trusses and blow in fiberglass insulation. With raised heel trusses you can get full thickness from wall-to-wall and you do not end up heating dead space between roof trusses. Roof steel should be ordered with a Integral Condensation Control (https://www.hansenpolebuildings.com/2020/09/integral-condensation-control-2/) and adequate ventilation provided at eaves and ridge.

Second choice would be to omit condensation blanket and Integral Condensation Control and use two inches or more of closed cell spray foam directly to underside of roof steel. This will not be nearly as effective as choice number one.


DEAR POLE BARN GURU: After reading several articles on your website I’m leaning towards building a single story post frame home with about a 4 foot crawl space so that I get benefits of a floor not hard on the joints and access to any plumbing or electrical if things go wrong. I would also like to build as close to a passive or net zero home (within a reasonable budget) but was wondering how to do that with a dirt floor crawl space. I’ve read that the best way is to keep crawl space within the envelope of the home but I’ve only read of a vapor barrier that is covering the dirt floor. Thanks for all your help. TODD in HENNING

DEAR TODD: Thank you for being a loyal reader. My knees and your joints must be related – as nothing pains me more than standing on a concrete floor for even relatively short periods of time.

Most crawl spaces are created with dirt floors, face it, they are low budget and meet Code with a 6mil black Visqueen Vapor Barrier installed. Now retired Hansen Pole Buildings’ Designer Rick Carr built himself a hunting cabin over a crawl space a year ago and decided to take a slightly different route. He opted to do a thin layer of concrete to cover ground in his crawl space, with an idea of being able to roll around using a mechanic’s creeper, should he need to work on sub-floor utilities. Here is an excerpt from part of Rick’s planning: https://www.hansenpolebuildings.com/2019/03/pole-barn-cabin-part-ii/


DEAR POLE BARN GURU: I am putting up a 60x135machine shed. 18 ft sidewalls, I’m wondering if the 3 2×8 laminated columns are enough or if i should spend 2900.00 more to go to 4 2×8 columns. thanks, SHANE in ASHTON

DEAR SHANE: Your question leads me to believe you are attempting to make a hundred thousand dollar plus building investment, without benefit of fully engineered structural plans.

Column sizes will be dictated by effects of column spacing, design wind speed and exposure (an Exposure C site being subjected to 20% greater wind forces), roof snow loads, dead weight of roof system (including any ceiling), roof slope as well as proper diaphragm design of your building shell.

I will implore you to please, please, please build only from a fully engineered plan. Think of it as an investment into one-time insurance. I only want to see you put this building up one time.

PermaColumns, Pole Barn Planning, and Insulating a Roof

This Monday the Pole Barn Guru discusses the use of PermaColumns, planning of a pole barn in Florida, and the best solution for a building without roof or exterior wall weather resistant barriers.

DEAR POLE BARN GURU: I am having a pole building put up with engineered laminated columns. The contractor is pushing a “Perma Column” made up of concrete and welded rebar that goes in the ground, about 5′ long surrounded by more concrete, and the laminated columns are bolted on top through 1/4″ steel brackets. My question is, are these laminated columns OK to go directly into the ground, with concrete, or is it important to keep them out of the ground as these Perma Columns would do? TIM in MEDICAL LAKE

DEAR TIM: Back in my post frame building contractor days we built many a building in and around Medical Lake.

Hopefully those columns are true glu-laminated columns, as opposed to nailed together. Most of these are designed specifically for post frame construction and have their lower six or more feet pressure preservative treated for structural in ground use. If this is your case, there is no issue with their lower end being embedded directly in ground (reducing costs and increasing ease of construction). While precast Permacolumns would keep columns out of ground, there is a better option – https://www.hansenpolebuildings.com/2018/04/perma-column-price-advantage/


DEAR POLE BARN GURU: Hello. We are planning to build a pole barn home in Arcadia, Florida. We were looking into the 40 x 60 with 2 leans on the sides. However, we cannot find someone who specializes in these constructions and can tell us how to start, what type of foundation is needed since it’s a pole barn. Do you do the entire project or you just supply the kit? Do you have contractors you work with as far as installation? Please get back to me asap. ANA MARIA in NAPLES

DEAR ANA MARIA: Well, you have reached out to where you should be, as Hansen Pole Buildings specializes in post frame homes (barndominiums and shouses).

Links in this article will get you through budgeting, financing, finding property, room design and floor plans: https://www.hansenpolebuildings.com/2019/10/show-me-your-barndominium-plans-please/.

Post frame foundations can be as simple as properly pressure preservative treated columns embedded in ground, to columns mounted to engineered brackets or even continuous footings and foundations.

Our buildings are designed for the average physically capable person who can and will read instructions to successfully construct their own beautiful buildings (and many of our clients do DIY). Our buildings come with full 24” x 36” blueprints detailing the location and attachment of every piece, a 500 page fully illustrated step-by-step installation manual, as well as unlimited technical support from people who have actually built buildings. For those without the time or inclination, we have an extensive independent Builder Network covering the contiguous 48 states. We can assist you in getting erection labor pricing as well as introducing you to potential builders. We would appreciate the opportunity to participate in your new home. Please email your building plans, site address and best contact number to caleb@hansenpolebuildings.com or dial (866)200-9657 .


DEAR POLE BARN GURU: Have a 30×42 pole shed at my new home that I purchased. It is partitioned into 2 parts, a back room (30×12) and front (30×30). The back room is finished off with OSB on the walls, in between the horizontal 2×6 purlins there is 1.5″ unfaced rigid foam board (expanded polystyrene I believe) and on the ceiling it appears that it is just a rock wool type insulation between the purlins and a 6 mil plastic vapor barrier stapled to the purlins along the bottoms all the way around the room. There is crosses cut into it every so often (assuming for a vent). The room is heated by a Propane wall heater and it gets Very warm and holds heat very well even with it being open to the 16 ft. peak. This room has been like that for 25+ years and it shows no signs of condensation, rust, rot, or anything for that matter. The front section (30×30) has 1.5″ RTech faced rigid foam boards between the horizontal girts with the foil sides facing into the shop & seams spray foamed etc. The 30×30 room will be heated with a vented 75k BTU unit heater that is also run off of LP. Side note- The building has no WRB between the steel and “studs” on the walls or roof. My question is how can the roof be insulated without the use of spray foam or removing the metal and wrapping it. I am looking for all the feasible options for this project, thank you. JACKSON in COLEMAN

DEAR JACKSON: Providing your building’s trusses are designed to support weight of a ceiling and any non-conditioned dead attic space above can be adequately vented, your best bet is to install a ceiling (my preference would be 5/8″ Type X gypsum wall board) and blow in fiberglass insulation. This will be your most cost effective alternative in materials and labor and will result in a minimum amount of space to be heated.



Taking the Bow Out of a Glulaminated Column

Taking the Bow Out of a Glulaminated Column

Glulaminated post frame building columns are touted by their producers as being able to withstand warping and twisting. On occasion, however, they will bow.

Hansen Pole Buildings’ client JOSH is self-building in SALMON, Idaho and wrote:

“Good Morning Mike,

Thought I would check with you, but probably know the answer already.

Is there any way to deal with a glulam post with a bow in it, aside from replacing it?

And if replacing, I can get one locally without pressure treatment. I presume since I am in Sturdi Wall brackets, that makes it OK… but would hate to find out from the inspector it has to be PT after the fact.

Thank you.”

Mike the Pole Barn Guru responds:

I had previously written about how one of our clients had taken twists out of solid sawn ncolumns here: https://www.hansenpolebuildings.com/2015/08/pressure-treated-post/. But, I had never previously shared how to un-bow a bow.

I shared this with Josh:

This is how we used to straighten bowed solid sawn timbers when I owned lumberyards.

Assuming it is bowed in a single direction – support it at each side of the bow, with bow up. Thoroughly saturate bowed area with water (as in seriously soaked), then put weight on at the center of the bow – enough to bring board to straight (we used to use a unit of lumber). Allow to dry and it will be straight.

Josh happened to have a nearby place where he could saturate this errant column.

And, while he did not have an ability to move a unit of lumber to perform Step #2, he did use Idaho ingenuity:

He reports, “Working well so far”!

Josh is building what will be an absolutely amazing post frame home – we will be looking forward to sharing photos as work progresses!