Tag Archives: embedded columns

Continuous Foundations, Column Spacing, and Inside Closures

Let’s finish off the week with one more day of Ask the Pole Barn Guru. Today Mike takes on reader questions about connection with a continuous foundation, benefits of 10′ or 12′ column spacing, and replacing inside foam closures.

DEAR POLE BARN GURU: Hello. We are located in Ohio. We would like to build a 24×40 pole building. Zoning says it needs to be attached per their rules so we plan to attach with a simple fabric awning to meet zoning. The county says we need a continuous foundation if it is considered attached. Stupid right? The only thing touching both building will be a fabric awning. I have been told we can have an engineered foundation, or a 6″ by 38″ deep concrete wall poured, wood foundation or a traditional block foundation. Where would I begin to find details for an engineered foundation? I am struggling finding the info and where to start. RALPH in POLAND

DEAR RALPH: In a typical fully engineered post frame (pole) building isolated columns embedded into your ground would be complying and meet Building Code requirements. We would like to see your jurisdiction’s written requirement for mandating a continuous foundation, as often times these ‘requirements’ are just one person’s own feelings of how things should be done, rather than having an actual basis.

Should this indeed be an approved statute, we can have your new building engineered with your continuous foundation of choice. One of our Building Designers will be reaching out to you to discuss further, or dial 1.866.200.9657 for immediate service.


DEAR POLE BARN GURU: Are there any benefits going with 10′ centers over 12′ centers? I was thinking about going with 10′ centers because in my mind it seems like that would be a stronger building and would have less purlin sag over the years but rather go with 12′ centers to gain more parking space for a leanto? Any recommendations? Thanks BRIAN in PARRISH

DEAR BRIAN: Regardless of spacing of columns or trusses, a fully engineered post frame building will be designed to meet or exceed a specified set of wind design criteria – speed and exposure. You are better served to increase design wind sped, so your entire buildings is capable of supporting higher loads, than to merely move columns closer together. Provided Code required deflection limitations have been properly engineered for, any purlin sag, over time, should be relatively imperceptible.


DEAR POLE BARN GURU: Greetings, My metal roof is 15 years old and the inside foam closures have deteriorated.  1.  Are they necessary, and 2. if so, how does one replace them?

I hate to remove the screws along the eaves (or maybe even more screws farther up each panel), but see no other way to get replacement closures under the metal panels.

I’d appreciate any advice


DEAR SHERRY: Properly manufactured inside closure strips are UV resistant and should outlive your building’s steel roofing. Personally, I find them essential, as without them small flying critters have a clear path to enter your building. In order to replace them, you will have to remove screws along your eave line. Once remains of old closures are removed, new ones can be put in place. Old screws should be replaced by both larger diameter and longer screws, to maintain integrity of connections and prevent leaks.

For extended reading on Inside Closures https://www.hansenpolebuildings.com/2015/12/the-lowly-inside-closure/



Build on a Slope, Joist Hangers, and the Future of Post Frame

This Monday the Pole Barn Guru answers questions about building on a slope with use of embedded columns or brackets on piers, the proper installation of joist hangers, and the Guru’s vision of the future of post frame construction.

DEAR POLE BARN GURU: Because of the 16% slope, I will be using concrete piers & posts to support a traditionally framed floor which will have 1-1/8″ tongue & groove plywood decking. My question — can Hansen provide a design for my timber frame shop which will have a loft? The size of the building will be 36′ x 16′ and the loft 36′ x 24′. KEVIN in SHERWOOD

DEAR KEVIN: We can design and provide your new building as a fully engineered post frame building with either embedded columns, or columns mounted to brackets on piers – basically a ‘stilt’ house type design.


DEAR POLE BARN GURU: Hello, I’ve got a question about the proper installation of the LU joist hangers.

I’m nailing them to the trusses through all the holes in the bracket, but when it comes to nailing them to the purlins using the 10d 1-1/2″ nails, it would seem like I should alternate holes as to not interfere with the nail on the opposite side. The holes that allow nails to be placed in the purlin side of the hanger are not directing the nail in at a 45 degree angle like some others I’ve seen, so just wondering if I should just be directing the nail in to slightly offset the other side? Just seems like a lot of nails in a small area if I do that.

Either way works for me. Just want to be sure I’m not mistakenly compromising anything by installing all those nails. BOB in MOSINEE

DEAR BOB: Weirdly enough I have installed probably tens of thousands of joist hangers and had seriously never given a thought to this (or experienced a challenge). Obviously the engineers at Simpson Strong-tie have thought this all through in designing these parts. I would think even if you were able to drive nails in from opposite sides perfectly so as they would hit each other, the point of the nail from one side would tend to deflect the nail from the opposite side. In all reality, because the holes are so close to the truss, the nails are going to be driven in at a slight angle (whether driving by hand, palm nailer or a gun). Installing all of the nails should not compromise the wood.

DEAR POLE BARN GURU: How do you foresee the post-frame market in the next 3-5 years? SCOTT in CHICAGO

DEAR SCOTT: I feel post frame construction will be the largest growth market in construction over the next five years. It is becoming increasingly popular as residences, especially with people fleeing big cities. Post frame buildings afford many opportunities not seen with other structural systems – minimal concrete for footings, easily erected DIY, easy to super insulate, rapid construction, vastly customizable.



Bigfoot Systems

Bigfoot Systems®

Bigfoot Systems® bills itself as North America’s Original #1 Selling Pier Footing Form, which I would say is most likely 100% or more correct.

So, what exactly is a Bigfoot and why would one use one?

Before we get carried away, I have never used a Bigfoot and this is not a celebrity endorsement. This article began with Hansen Pole Buildings’ Designer Greg Lovell asking me what I thought of the system.

Bigfoot is a footing form which is used to form a pier base under a cardboard construction tube (think Sonotubes: https://www.hansenpolebuildings.com/2013/11/sonotube/).

Unless one wants to make a significant investment in concrete filling a very large diameter tube, it is more economically practical to increase the size of the footing (maintaining a smaller diameter tube) in order to properly distribute the downward forces over an adequate surface.

In a previous article we shared why it takes a fairly large footing to spread the weight out (read more here: https://www.hansenpolebuildings.com/2012/08/hurl-yourconcrete-cookies/).

There are some limitations as to the “smallness” in diameter of the cardboard tube. In cases with concrete encasement around an embedded column, Code requires a minimum of four inches of thickness of concrete on all sides of a column. The diagonal measure across a nominal 6×6 (actual 5-1/2 inch by 5-1/2 inch) column is just under eight inches, meaning the smallest possible Sonotube would be 16 inches in diameter.

While Bigfoot comes in 20, 24, 28 and 36 inch diameters. Only the largest size will accept a tube over 12 inch diameter.

I am certain Bigfoot offers advantages for many types of construction, especially with decks. For post frame construction, in most cases it appears as if it would be added effort and expense. In order to be utilized with an embedded column, a 36 inch diameter or greater hole would have to be dug – and rarely are auger bits this large readily available.

The only true practical case I could make for the use would be if one had soil which collapsed as the hole was being dug – thereby forming a crater.


Building KitPrice

Know more about our pricing.

Pole Barn Guru Blog

The industry’s most comprehensive post frame blog.

Ask The Guru

This guru will grant you the answer to one pole barn question!

Pole Building Learning Center

To help guide you in the design of your new pole building.

Photo Gallery

Look at our collection of building photos for creative ideas!

Paint Your Building

Lets pick out some colors!