Tag Archives: inside closures

Avoid Metal Building Insulation

One More Reason to Avoid Metal Building Insulation

 

Photo isn’t showing the inside of a Hansen Pole Building. This view happens to be inside of an eave sidewall looking up underneath a post frame building roof. White vinyl facing happens to be underside of a product commonly known as Metal Building Insulation, having actual R values so low it should be more appropriately described as Condensation Control Blanket.

For previous words of wisdom in regards to Metal Building Insulation, read more here: https://www.hansenpolebuildings.com/2015/05/metal-building-insulation-3/.

This particular building can be found in Western Washington. 20 years old, construction was done by current building owners. A horse barn, building has a concrete slab floor, other than in horse stalls. Each side of building has open (no soffits) overhangs.
Now our challenge – certain days, with high humidity and fog, building has a problem with water ‘leaking’ along first purlin inside building.

My take regarding the problem’s root cause:
Properly installed in a roof, each roll of Metal Building Insulation should be stretched two inches past eave strut (eave purlin). Fiberglass adhered to vinyl facing should be removed from these two inches, folded back over top of intact fiberglass, then fastened securely to eave strut top until steel roofing installation. This takes a bit more effort than merely cutting rolls off flush with eave strut outside and calling it a day.

My guess, this building’s owners were not given instructions advising how to properly install Condensation Control Blanket, so it was done a quicker and easier way. This leaves a raw edge of fiberglass above the eave strut. When those chilly high humidity days occur, underside of roof steel in eave overhang has condensation collecting. Some of this moisture then contacts raw fiberglass edge and wicks up into building. Please note, in photo the apparent puffiness of insulation between sidewall and first purlin up roof. This would be an indicator water has sat above white vinyl vapor barrier.

A solution exists – remove screws from roofing above fascia and eave strut. Insert form fitted inside closures above eave strut, making certain no fiberglass remains exposed to overhang. More information about inside closures here: https://www.hansenpolebuildings.com/2015/12/the-lowly-inside-closure/)

Replace screws (using larger diameter than original screws). Roofing should be screwed to both sides of high ribs into fascia board. We recommend use of 1-1/2″ Diaphragm screws as a replacement.

It Is Exactly the Same Building: Part II

Well, maybe not exactly the same building.

Yesterday I ran a beginning list of comparison’s between a Hansen Building quote and a quote by one of our competitors espoused to be “exactly the same” by a client of ours.

The saga continues:

Powder coated diaphragm screws vs. #10 diameter painted screws . Those who are familiar with the properties of paint and powder coating know the first is far superior. Some more information on powder coated screws is available here: https://www.hansenpolebuildings.com/2012/08/lobular-powder-coated-screws/. There are structural challenges which occur when using industry standard small diameter screws, which we found out about only when we went to test a building roof: https://www.hansenpolebuildings.com/2012/08/this-is-a-test-steel-strength/.

 

Recessed purlins vs. stacked purlins. Stacked purlins go over the top of the interior roof trusses, which effectively lowers the truss by the thickness of the roof purlin, hence reducing interior clear height – you get less volume of usable space! Stacked purlins also attach to the trusses via “paddle” blocks, which are highly problematic: https://www.hansenpolebuildings.com/2012/05/paddle-blocks/.

Bookshelf girts vs. flat girts. Wall girts placed flat on the outside of columns rarely meet with the deflection criteria of the Building Code as can be found here: https://www.hansenpolebuildings.com/2012/03/girts/.

Inside closures at eave vs. no eave closures. Inside closures keep the flying critters out of your new post frame building. https://www.hansenpolebuildings.com/2015/12/the-lowly-inside-closure/.

True doubled trusses vs. Single trusses each side of columns. When two trusses are spaced apart by blocking, they no longer act as an integrated pair, each truss functions on its own. In the event of a critical roof load, if the weakest link is a flaw in one of the trusses, the entire roof could easily land on the ground. With true double trusses, they load share – and since the probability of two trusses having the exact same weak point is extraordinarily small, an overloaded roof is more likely to stay standing after the single truss roof has gone boom.

Engineered steel hangers to attach purlins and truss bracing vs. Nailed connection. There is a reason Building Officials like engineered steel connectors – they are a stronger connection! https://www.hansenpolebuildings.com/2013/08/simpson/

Ledgerlocks to attach trusses to columns (eliminates drilling huge through bolt holes) vs. Bolts. We are into providing buildings which are structurally sound as well as easily constructed by the average person who can and will read English. This truss to column connection is both!

Engineer sealed plans and calculations vs. not sealed plans. My long term readers have read my harping on engineered plans. Here is why: https://www.hansenpolebuildings.com/2016/10/engineer-stamped-pole-barn-plans/

500+ page Construction Guide. Let’s face it, it does not matter how good the design or materials are, if there are not explicit instructions on how to get everything together right. I’ve seen plenty of post frame building kit packages instructions in my nearly four decades in the industry. Absolutely nothing compares to what we provide.

Getting a better “deal” on a post frame building than what was quoted by Hansen Pole Buildings? And of course it is “exactly the same building” – let us review any competing quotes you are considering. The service is absolutely free of charge and if it is indeed an equal to or better building, and a better price, we will be the first ones to tell you so!

Dear Pole Barn Guru: Will Treated Wood Rot?

New!  The Pole Barn Guru’s mailbox is overflowing with questions.  Due to high demand, he is answering questions on Saturdays as well as Mondays.

Welcome to Ask the Pole Barn Guru – where you can ask questions about building topics, with answers posted on Mondays.  With many questions to answer, please be patient to watch for yours to come up on a future Monday or Saturday segment.  If you want a quick answer, please be sure to answer with a “reply-able” email address.

Email all questions to: PoleBarnGuru@HansenPoleBuildings.com

 DEAR POLE BARN GURU: I have a pole building reroofed with 1′ overhangs and am wondering if you think I should/need to use closures or something at the eave to seal the ribs. Thanks FREAKING IN FOSTORIA

DEAR FREAKING: I’d recommend the use of form fitted inside closures on top of the eave girt, if you have enclosed overhangs, or on top of the eave girt with open soffits. There should also be form fitted outside closures on top of the roof steel underneath the ridge cap.

This combination will help to keep those nasty little flying critters from joining you inside of your building.

DEAR POLE BARN GURU: water drainage. BUDDY IN HOLLEY

 DEAR BUDDY: Not entirely sure how to best assist you from the two word question.

Assuming your new pole building is not going to be used as a home (in which case I would make entirely different recommendations using a raised wood floor), I’d approach this as for any pole building drainage solution. I would order columns long enough to get the required depth to extend below the frost line, plus make up for any grade change. After the columns were set, I’d bring in good compactable fill to get the elevation of the bottom of any future concrete slab above the highest point of the surrounding grade. Above the high side of the building, a French drain can be installed to divert any natural drainage.

For those who are unfamiliar with French drains, it is when a trench is dug beyond the building perimeter, drain rock is placed in the bottom, then one or more rows of perforated four inch pipe are laid. After placing the pipe, the balance of the trench is filled with drain rock. I hope this helps – if not…please email me more information.

DEAR POLE BARN GURU: My concern with ground contact treated wood is not environmental, it is by experience. Apparently, “treated” can be ambiguous as to what chemical, degree of saturation and retention level the wood has. I had the base of a support structure, in ground contact lumber, show some rot after about 12 years. The structure was on poorly drained soil and that may have been a contributing factor.

I was reading some ag forum topics on pole framed buildings with treated lumber bases and more than one contributor claimed failure at around 20 years, necessitating a restructuring of the foundation. That got me thinking about the concrete footing pillar but perhaps I am being a bit paranoid. MINDFUL IN MICHIGAN

DEAR MINDFUL: Sadly the treated wood, lumberyard and even the pole building industry have not done a very good job ensuring the end users of pressure preservative treated wood get the products which would do the job.

Most “ground contact” treated lumber is really not meant for any type of critical use applications.

I can say I have met or know every major pole barn builder and supplier in the United States, and I have yet to have had a report of any properly pressure preservative treated column ever rotting off. The key is “properly pressure treated”.

Here is an article I wrote earlier which will provide more in depth information:

https://www.hansenpolebuildings.com/blog/2012/10/pressure-treated-posts-2/