Tag Archives: eave vents

Gable Venting a Post Frame Attic

Gable Venting a Post Frame Attic

Reader ALLEN in KIRBY writes:

“30×50 13 foot walls roof is 4-12 pitch I need to vent the attic. What size vents do I need to order? Two, one for each gable end what size do I need?”

Mike the Pole Barn Guru says:
From the 2021 IBC (International Building Code)

1202.2.1 Ventilated attics and rafter spaces. Enclosed attic and enclosed rafter spaces formed where ceilings are applied directly to the underside of the roof framing members shall have cross ventilation for each separate space by ventilating openings protected against the entrance of rain or snow. Blocking and bridging shall be arranged so as not to interfere with the movement of air. An airspace of not less than 1 inch shall be provided between the insulation and the roof sheathing. The net free ventilating area shall be not less than 1/150 of the area of the space ventilated. Ventilators shall be installed in accordance with manufacturer’s installation instructions.

Exception: The net free cross-ventilation area shall be permitted to be reduced to 1/300  provided both of the following conditions are met:
1. In climate zones 6, 7 and 8, a Class 1 or 2 vapor retarder is installed on the warm-in-winter side of the ceiling.
2. At least 40 percent and not more than 50 percent of the required venting area is provided by ventilators located in the upper portion of the attic or rafter space. Upper ventilators shall be located no more than 3 feet below the ridge or highest point of the space, measured vertically, with the balance of the ventilation provided by the eave or cornice vents. Where the location of wall or roof framing members conflicts with the installation of upper ventilators, installation more than 3 feet below the ridge or highest point of the space shall be permitted.

You are not in a Climate Zone 6 or higher. As long as 50-60% of your venting area will be in the lower portion of your attic and 40-50% in the upper three feet, you can meet Code with a NFVA (Net Free Ventilation Area) of five square feet (720 square inches), half of which should be at each end. To give you an idea, www.airvent.com offers 14″ x 24″ rectangular wall louvers with a NFVA of 92.4 square inches each. It would take four of these in each gable end to provide adequate NFVA.

Ventilation, planned in advance, with air intake from enclosed vented soffits and exhaust at ridge yield a better airflow, at lower investment, with far superior aesthetics.

I Think I Have Made Some Errors!

I Think I Have Made Some Errors!

If you are a post frame building kit provider or a builder reading this article – please STOP SELLING ONLY ON A CHEAP PRICE. You are leaving dissatisfied clients in your wake and doing a disservice to our industry.

Reader RICK in IDAHO writes:

“Hello Sir! I think I have made some errors when I had my PB built regarding insulation plans. 30×40 with 12’, 8” side walls on the inside. Cement floor. No Tyvek or other barriers on walls or roof, just steel on wood all around. Soffit vents all the way around and vented roof cap. Was planning to have insulation blown in walls and ceiling, with a vapor barrier (reinforced plastic?) facing interior occupied area. Did not use closure strips but used canned spray foam to insulate/seal the ribs and edges walls, top and bottom and roof. Trusses were engineered for sheet rock ceiling. Won’t have temps above 50 F in winter on occasion But will try to keep above freezing in winter. No AC in summer. South East Idaho- hot summers and some -10/20 degree nights in winter with generally low humidity year around. Edge of the Idaho desert. Any advice? Thanks for sharing your knowledge with us!”

Thank you Rick for your kind words.

I cannot fault you – an average person having a post frame (pole) building built doesn’t know what they don’t know. I see this situation occur over and over when building providers or builders do not thoroughly explain options and their benefits to clients, instead relying upon a cheap price.

If your concrete slab on grade does not have a vapor barrier under it, seal the top of your floor. https://www.hansenpolebuildings.com/2019/02/how-to-properly-apply-post-frame-concrete-sealant/

Use two inches of closed cell spray foam against your wall and roof steel – if not, you run a high risk of condensation troubles. If you are going to blow insulation into your walls, use a product such as BIBs. https://www.hansenpolebuildings.com/2011/11/bibs/
Do not use a vapor barrier inside of either your walls or ceiling. Make sure the spray foam applicator does not spray over your eave or ridge vents.

All of these things are manageable, they just could have been solved far more economically if they had been done right to begin with.