Tag Archives: flash and batt system

Whole House Barndominium Fans

Whole House Barndominium Fans

Apparently when it comes to barndominiums, there is a limitless number of subjects to cover!

Reader CAROLYN in CLEVELAND writes:

“We would like to build a post frame home but I would like to have a whole house fan to cut down on cooling costs. Most barndos we see under construction use spray foam insulation directly against the metal roofing/ siding which would prevent the use of a whole house fan. You talk about blown in insulation and roof venting which sounds similar to stick built homes. So is it safe to assume that your designs would allow us to install a whole house fan in the attic space with adequate venting? I fondly recall the ancient airplane engine attic fans 3 or 4 ft wide from years ago and was pleasantly surprised to see the new ones drastically reduced in size and volume. What is your opinion on this?”

Mike the Pole Barn Guru responds:

Most Hansen Pole Buildings’ post frame barndominiums are designed with dead attic spaces – blown in insulation above a sheetrocked ceiling (yes, very similar to stick built homes). This would certainly allow for use of a whole house fan and could prove to be very effective. I would still encourage use of a flash coat of closed cell spray foam insulation inside your barndominium’s wall steel. (For extended reading on flash and batt: https://www.hansenpolebuildings.com/2020/01/flash-and-batt-insulating-barndominium-walls/).

In most climates whole house cooling using a whole house fan can substitute for an air conditioner. Combined with ceiling fans and other circulating fans, whole house fans provide acceptable summer comfort for many families, even in hot weather. In addition to whole house fans, central heating and cooling system ducts can be modified to provide whole house cooling.

A whole house fan pulls air in from open windows and exhausts it through the attic and roof. It provides good attic ventilation in addition to whole house cooling. Whole house fans should provide houses with 3 to 6 air changes per hour (varies with climate, floor plan, etc.—check with a professional to determine what is appropriate for your home). Air-change rate you will choose depends on your climate and how much you will depend on your whole house fan for cooling.

Installing a whole house fan can be tricky and should be done by a professional. An experienced professional should take your attic measurements and install your dedicated circuit wiring and, if needed, your new attic vents.

Attic ventilation will usually need to be increased to exhaust fan’s air outdoors. You’ll need two to four times the normal area of attic vents, or about one square foot of net free area for every 750 cubic feet per minute of fan capacity. Code requirements for dead attic space venting are 1/300th of the attic “footprint” with at least half of this located in the upper half of the attic. Net free area of a vent takes into account resistance offered by its louvers and insect screens. More vent area is better for optimal whole house fan performance.

If your fan doesn’t come with a tight-sealing winter cover, you should either buy one or build one. If you switch between air conditioning and cooling with a whole house fan as summer weather changes, build a tightly sealed, hinged door for fan opening easy to open and close when switching cooling methods.

Be cautious when operating these large exhaust fans. Open windows throughout the barndominium to prevent a powerful and concentrated suction in one location. If enough ventilation isn’t provided, these fans can cause a backdraft in your furnace, water heater or gas-fired dryer, pulling combustion products such as carbon monoxide into your living space.

Whole house fans can be noisy, especially if improperly installed. In general, a large-capacity fan running at low speed makes less noise than a small fan operating at high speed. All whole house fans should be installed with rubber or felt gaskets to dampen noise. You can set a multi-speed fan to a lower speed when noise is a problem.

You may be able to use heating and air conditioning ducts in your barndominium as a means of whole house ventilation. This would involve installing an intake duct to pull air into an attic-mounted system directing air into your heating and cooling ducts. A damper would control exhaust air from your home into the attic. Check with a local HVAC professional to find out if this option is right for you.

Creating Extra Work in Barndominium Framing

Creating Extra Work In Barndominium Framing

A supposed downside of post frame (pole barn) buildings for barndominiums is having to frame a wall inside of an exterior wall in order to create an insulation cavity and a way to support interior finishes.

This myth is created and propagated by post frame kit suppliers and post frame builders who do not understand there is a solution – and a very cost effective one (in both labor and materials).

Rather than framing exterior girts (as shown in photo) and then adding vertical stud walls between columns, bookshelf girts can be utilized.

I’ve done several thousand pole buildings using this “bookshelf” or “commercial” girt method. I have two of them myself – in Northeastern WA, so I have a cold climate to contend with.

Use a commercial girt one size larger than wall columns (2×8 on a 6×6 post, etc.), setting commercial girts so 1-1/2″ hangs past the column’s exterior face. Wrap framing with a well sealed high quality Weather Resistant Barrier (for extended reading on Weather Resistant Barriers https://www.hansenpolebuildings.com/2016/01/determining-the-most-effective-building-weather-resistant-barrier-part-1/). 

As an alternative to using a Weather Resistant Barrier, closed cell spray foam can be applied to the interior face of siding as part of a flash-and-batt system https://www.hansenpolebuildings.com/2020/01/flash-and-batt-insulating-barndominium-walls/.

You will find this installation method compensates for any irregularities in column dimensions and creates a deeper insulation cavity. Side benefits – electrical can be run around column exteriors, without a need to drill through them to run wires. On walls a multiple of three feet in length, it also saves having to rip an edge of a panel off either the first or last sheet of steel on a wall.

In either case, block ends of bookshelf commercial girts solid against columns with what is called a “bearing block”.  Take 2×4’s or larger (depends upon engineering) cut 22-1/2” long to fit between commercial girts and install them flat against the post on faces where girts will attach.  Wide face of the block should be flat against the column and aligned with the post edge (not sticking out past column edge unlike girts).   Nail these girt support blocks to columns with a minimum of  two (2)10d galvanized common nails at each end (higher wind loads may require more nails).  This type of nailing is quick and easy and provides a solid support for commercial girt above blocks.  This is a far more solid and stable connection than toe-nailing. Toe-nailing is done by angling a nail upwards from bottom (or downwards from top) of commercial girt, at a 45 degree angle trying to catch enough post edge as the nail goes through to column to hold it there.  Toe-nailing is a very poor connection (and is subject to lots of installation errors).

For maximum cost effective R value, use BIBS insulation. I found it to be cost competitive with installed batt insulation, has a higher R value and completely fills all voids. https://www.hansenpolebuildings.com/2011/11/bibs/

I fondly remember a gal who called me one day asking for “canning jar shelves”…you know like you did before for us.”  Checking our records, I quickly discovered we designed commercial girts on their first building.  They liked them so much – they wanted them again!