Tag Archives: post frame building

Bad Energy Efficient Pole Barn Advice

Bad Energy Efficient Pole Barn Advice from GreenBuildingAdvisor.com
Long time readers of this blog have seen ample posts about energy efficient post frame (pole barn) buildings. As most are aware, there is as much bad information (maybe more) than good available on the internet. Whilst I’d like to believe Martin Holladay at www.greenbuildingadvisor.com is fairly knowledgeable – when it comes to his answers on this particular subject, he has (in my humble opinion) missed the mark.

Here are a few of Martin’s comments:
“The main problem with insulating a pole barn is creating a good air barrier. There are many opportunities for air leakage: between the insulated sections of the wall and the vertical posts; at the base of the wall (which either meets dirt, gravel, or a concrete slab); and at the intersection of the wall and the insulated ceiling. You should strive for airtightness when you create this assembly. It won’t be easy — but do your best.”

“It’s tough to insulate a pole barn. First, there is the question about the floor. Do you have a slab or gravel? If it’s a gravel floor, it’s hard to air-seal the bottom of the walls. If you have a slab, we’ll need to know your climate zone or location, so we can recommend whether you need a horizontal layer of rigid foam under the slab. Next, you still have issues of how to support the insulation. In most pole barns, you don’t have studs. You have posts and horizontal nailers between the posts. This makes air sealing difficult, and using conventional insulation difficult. The best way to proceed is to work on the exterior side of your structural frame. Again, either SIPs (structurally insulated panels) or nailbase is one approach — and if you use SIPs, you could skip the pole barn structure, and just build a SIP building. Another approach is to install a stud wall on the outside of your pole barn to hold the insulation — but again, this raises the question, why not just build an ordinary building with stud-framed walls if you need it for insulation?”

“I’m afraid that ‘energy efficient pole building’ is an oxymoron. If you want to make a pole building energy-efficient, you pretty much have to build an entirely new building — either inside the pole building or outside the pole building — to create an air barrier and provide somewhere to install the insulation. That’s why people who are interested in energy efficiency don’t choose dirt floors or pole construction. However, if you decide to let go of the idea of energy efficiency, you can certainly build a dirt-floored tiny house with a pole frame.”

Mike the Pole Barn Guru Advises

Maybe the thought of all post frame buildings having dirt floors should be thrown out of the discussion. From experience the only post frame buildings which have dirt “floors” are ones which are always going to be pure agricultural or storage buildings and will never be climate controlled, or they are dwellings with wood floors elevated above a crawl space.

The air barrier issue for post frame construction is resolved the same way a stud framed building would be – utilize a quality building wrap between framing and siding, then insulate between girts (think studs run horizontally). Thermal transference in walls can be reduced by having an interior set of wall girts to support inside finish surfaces such as gypsum wallboard. This is far less material intensive than the double studwall system promoted by some stick frame builders.

Wall insulation for post frame buildings can run the gamut from unfaced fiberglass batts, to BIBs (http://www.hansenpolebuildings.com/2011/11/bibs/), to closed cell spray foam or combinations thereof, just like studwall construction.

Top of wall to insulated ceiling transition is the same for either form of construction. Raised heel trusses (http://www.hansenpolebuildings.com/2012/07/raised-heel-trusses/) allow for full thickness of insulation above the perimeter walls, and should be utilized in any case with a climate controlled building.

For slab on grade applications frost-protected shallow foundations (http://www.hansenpolebuildings.com/2016/11/frost-protected-shallow-foundations/) are a practical solution, with post-frame holding an advantage in not having to have a thickened edge of the concrete floor.

Designing for energy efficiency? Look no further than post frame construction – at the corner where energy savings and cost savings meet!

Halloween Store Not a Pole Barn?

Narrowmindedness drives me literally crazy. Post frame (pole barn) buildings can look like absolutely any other building. The only differences being the structural system – post frame and saving a fair amount of hard earned money.
From the Marion, Indiana Chronicle Tribune February 21, 2018:
“The Marion City Council will review a rezoning request for 1427 W. 10th St. for a third time before voting.
Fireworks store owner Ron Vielee made the request, saying he wants to expand his reach from his current business at 1421 to include a new Halloween store and parking lot in the properties west of the his current store. The council voted to move the request to a third reading following a discussion at Tuesday’s meeting.
The request to rezone would classify the property as “General Business,” it is currently zoned as a residential. Vielee said he intends to purchase both this property and the adjacent property at 1423 W. 10th St. The 1423 property has already been rezoned, according to Sam Ramsey, advisory plan director.
A burnt house occupies the location at 1423 W. 10th St. Vielee said he will tear it down, once the sale goes through.
Council member Jim Brunner said he was appreciative of Vielee’s effort to tear down the vacant structure.
Vielee said he intends to make an offer to the owner of the 1427 property. In all, including demolition, purchasing the properties and building a new store, Vielee said he will invest nearly $300,000 into the community.
“The whole neighborhood is going to look better, for one,” he said. “It’s going to be nice. It’s not like I’m going to put up a pole barn.”
Vielee answered a number of questions from the council on his intentions and his businesses. The business owner said the Halloween store, much like fireworks store, would be open for about a month out of the year.
Council member Deb Cain noted when the fireworks store went in, the council granted a tax abatement. However, Cain said the business plan was for the store to be open year-round, selling Thanksgiving and Christmas decorations.
Vielee said that was true and also gave permission for the council to consider doing away with the tax abatement.
“If you want to just discard it and charge me full taxes, I’m fine with that,” he said.
Council member Alan Miller asked Ramsey what sort of businesses could take occupancy at the location if rezoned and Vielee’s business did not last.
“Pretty much anything you see up and down the bypass,” Ramsey said. “General Business is our broadest zoning districts in town.”
This would include tobacco stores, liquor stores and convenience stores.”
Considering new construction for virtually any sort of retail business? If you want a structure which is aesthetically pleasing, cost effective and goes up quickly, then post frame construction might just be your ticket to success. And yes, it may be called a “pole barn”.

The Perma-Column Price Advantage?

My good friend John owns (among other things) Heartland Permacolumn. I’ve borrowed this from his website (http://www.heartlandpermacolumn.com/products/the-perma-column-price-advantage/):
“Perma-Column products give you the ultimate price advantage. You simply cannot put up a building on a concrete foundation for less money.

Yet some may say, “They’re too expensive…”

HOWEVER, the only people who ever say this install buildings using treated wood posts embedded directly in the soil.  They think adding between one and three thousand dollars to a building makes the price “outta sight…”

It is true that there is one type of building that is less expensive than a Perma-Column building…one built on a treated wood foundation.  Treated wood posts may last a very long time in soil contact in some cases…and not so long in other cases.  This is part of what makes post-frame buildings the most economical of all building types.

But there are several other reasons why post-frame is so economical and efficient.  First, it is much quicker, easier and less resource-intensive to stick a post in the ground and build from there than it is to build any other type of building on a typical foundation.

Second, by using posts that are 8′ or more on center, you have far fewer structural members to install compared to other types of buildings.

Third, because the structure is made of wood it is less costly, requires no fancy equipment or specialty trades, is easier to work with, is very environmentally-friendly and is energy-efficient.

Furthermore you can build exceptionally high sidewalls (usually 24′, sometimes more) and exceptionally wide clear-spans (100′ or more without supporting walls or columns) for ultimate design efficiency and flexibiliity. All of these advantages remain firmly in place when you build on concrete piers or a continuous concrete foundation using Perma-Column products.

When one takes a close look at costs per linear foot, the upgrade is not really very much at all.  A Perma-Column upgrade is typically between $10 and $11 per linear foot compared to the price of building on treated wood posts embedded directly in the ground.  This may increase the price of a really small and inexpensive agricultural building by more than 10%, but it may also add less than 4% to the total cost of a really nice one…or to a typical commercial, residential or industrial building. Click here to download a PDF that provides a cost comparison.

So if you want a REALLY cheap building and don’t care when or if the post foundation will rot, you should build a post-frame building on a treated wood post foundation…

…or for roughly 10% more, you can build using Perma-Columns and have an investment that will hold its value for a very, very long time.”

Mike the Pole Barn Guru writes:

This particular article has been triggered by a question posed by reader MATT in WABASH who writes:
“What is the cost of a perma-column? I am looking at a 40 x 56 building most likely at a residence that I will live long term and thought perma-columns would be a good investment, but I am having trouble finding the cost online for them. Thanks!”
Well Matt, as near as I can tell, the budget should be around $200 per column by the time they get delivered to your jobsite. Next challenge is going to be unloading and properly placing the several hundred pound Perma-columns exactly in the holes, on top of a poured concrete footing.
With the thought you are trying to avoid placing pressure preservative treated wood into the ground, there may be a more affordable (and easier to install) alternative. Assuming four foot deep two foot diameter holes, one could pour under one-half yard of premix in the hole and mount a bracket in it for roughly $100. Same longevity, same concept, easier to install.

Both Ends Open, Pole Barn Wind Load Challenge

The Both Ends Open, Pole Barn Wind Load Challenge
There are plenty of people who just do not understand the basic concepts of how wind loads are transferred through a pole barn (post frame building) to the ground. Included amongst these would be those who desire buildings which are enclosed on both long sidewalls and open on both ends. This is one of the worst possible design concepts one can come up with in a new post frame building.

Of course somewhere along the discussion between the Building Designer and the client this statement always seems to come up:
“Well Joe Blow has one down the road and his is still standing”.
My response to this is – “Joe has just been phenomenally lucky”.

In my years living in Eastern Washington, we made numerous trips from Spokane to Seattle. Driving across Interstate 90, one passes through the towns of Moses Lake and Ellensburg. This is prime grass growing country, where numerous hay storage buildings have been constructed over the years, with both ends open. The majority of these now have complex systems of braces and/or extra diagonal columns added to their sidewalls in attempts to maintain them standing vertical. More than a few of them only remain standing up because they are full of hay – the contents alone are what is keeping the buildings standing.

I’ve hashed through this challenge in the past, however it is apparent too few people have read and grasped the situation (read more here: http://www.hansenpolebuildings.com/2017/04/open-endwalls-hay-barn/).

For those of you who enjoy audience participation, please go find an empty shoe box and a pair of scissors.
Remove the lid (and the shoes) from the shoe box. Place it open side down on a table top. Push down on the box – pretty stable, isn’t it?
Next, cut both of the narrow ends completely out of the box. Again place it open side down on the table and push on it…..
Flat as a pancake, isn’t it?

The very same concepts work to keep buildings standing. Remove too much or all of the ends and the building does a fall down, goes boom.

Just because Joe happens to have a building standing which sound engineering practice says it should not be, does not make it right. Most folks are going to make a significant financial investment into a new post frame building and my personal preference is for them to not have their insurance company paying to replace the building.

Will My Poles Rot Off? Not If They Are Pressure Treated Wood!

Do the poles start to rot out after so many years? That depends on whether or not they are pressure treated.

This question was recently posed to me by reader MARK in WOLCOTT. Typically my answer would include some snarky comment such as: “Most certainly, however it might not be during your grandchildren’s grandchildren’s lives!”

The reality is, I know lots and lots of people in the lumber and post frame building industry. Having spent my entire adult life in it tends to add to these. I have yet to meet anyone, who can tell me they have actually experienced a properly pressure preservative treated wood building column rot.

Of course there are always those who have stories such as, “My Uncle’s cousin says he knows of somebody, who knew somebody who had all of their pole barn poles rot off”. Could be – and they probably were not pressure preservative treated at all!

In order to put this matter to rest and ease my already untroubled mind, I utilized the power of the internet and Google to do some research.

Well, it turns out four fine people named Stan Lebow, Bessie Woodward, Grant Kirker and Patricia Lebow got their collective thinking caps together and wrote an article entitled “Long-Term Durability of Pressure-Treated Wood in a Severe Test Site”. Said article was published in Advances in Civil Engineering Materials, Vol. 2 No. 1, 2013 on pages 178-188 (for those of you who want to read it in its full and unabridged glory: https://www.fpl.fs.fed.us/documnts/pdf2013/fpl_2013_lebow001.pdf).

Our team of authors was motivated, as stated in the introduction to the article, by this:
“Pressure-treated wood has been widely used as a durable construction material in the United States for over a century. However, despite its long history of use, there are relatively few reports on the long-term decay and insect resistance of pressure-treated wood”.

Now, as it so happens, the USDAFS (U.S. Department of Agriculture Forest Service) has a test site located near Saucier, Mississippi. The plot has a relatively high annual rainfall and warm temperatures which create a harsh decay environment. Eastern subterranean termites are active at the site. The location is within American Wood Protection Association (AWPA) Deterioration Zone 5, Severe Hazard, which is the most severe hazard classification.
As a control, some untreated posts were placed and all failed in less than three years!

The current Code standard for pressure-preservative treated lumber for structural use is UC-4B (read one of my better articles of all time regarding pressure-preservative treating here: http://www.hansenpolebuildings.com/2012/10/pressure-treated-posts-2/). UC-4B requires a chemical retention for many water borne treatments such as ACZA, CCA-B and CCA-C of 0.60 lb/ft^3 (pounds of chemical per cubic foot of lumber). With retention levels LESS than the current UC-4B requirement, there have been ZERO failures in these chemicals in tests of up to 61 years!

I will stand upon my initial remarks for lifespan.

Put the Architect in Charge?

Put the Architect in Charge?
I spent several years paying off my college student loans from Architecture school, so I do have a profound respect for architects who have been able to make a living practicing their trade. This, however, does not mean I feel the intervention of an architect is appropriate in all situations and circumstances.
Case in point, from a copyrighted article in the Greenfield, MA “The Recorder” of November 29, 2017:
“BUCKLAND — Accepting the recommendations of the Highway Garage Building Committee, the Selectboard is asking Wilbraham, Vt., architect Roy S. Brown for a price proposal on the design and cost estimates for building a 5,000-square-foot town highway garage and a 5,000-square-foot pole barn to store equipment.
The town bought the 4.7-acre former Mayhew Steel property in March 2016, but needs a municipal garage that meets state building code. The plan includes demolishing most of the old Mayhew Steel complex.”
There is a strong possibility Hansen Pole Buildings could have saved the 1902 residents of Buckland, MA some of their tax dollars. At absolutely no charge to municipalities and governmental agencies which are looking at new structures which could or should be post frame buildings, we will provide both a free cost estimate, as well as engineer sealed plans and specifications which can be utilized when sending the project out for bid.
Why?
We happen to be taxpayers as well and we care deeply about the squandering of our contributions on government projects. If we can help to hold down the costs and provide for the public true value for their investment, we sleep well at night.
Do you know of a town, city, state or even federal need for a new building? If so, let us know whom to contact.
For more reading on this subject: http://www.hansenpolebuildings.com/2016/11/free-engineered-pole-building-plans/.

Can Wall Girts Be Installed Before Trusses?

Can Wall Girts Be Installed Before The Trusses?

In my travels over the years I have seen more than a few post frame buildings under construction. When I find one being constructed by a building contractor, if the wall girts are installed before the roof, it is an immediate giveaway to the builder having been a framer at one time.

Why?

Because the correct (and easiest) way to assemble a post frame building is to construct the roof first, then place the wall girts.
But does this sound counter intuitive??

Client ED from CLINTON wrote to Hansen Pole Buildings’ Mistress of All Things Being Delivered, Justine, recently:
“I do have another question.  I am very limited on Whidbey Island concerning  options for setting the trusses and I do not believe I will be ready for the trusses when they arrive on site, so paying the truss company to set them at the time of delivery is not an option. .  It appears that Hansen’s recommends that the trusses get placed after the skirt boards are installed and before the wall girts are installed.  Do you see any issue with installing the wall girts prior to installation of the trusses?

Mike the Pole Barn Guru Writes:

Well, there could be some issues.

The majority of our clients (as well as most professional post frame building installers) frame up portions of their roof on the ground and then lift entire bays using either post top winch boxes, or a crane. Having girts in place would make this an impossibility as the girts would be in the way of raising the trusses.

In the event you decide installing the girts first is the direction you really want to go, it is crucial to have the tops of the columns held in place along the length of the building at exactly the column spacing. It is far easier to have to custom cut a few girts to various lengths and be able to keep all of the purlins in each bay the same length.

There are always methods to our madness, which is why the Hansen Pole Buildings’ Construction Manual leads clients (or their builders) through the process of assembly in the correct order to make the process as easy and pain free as possible.

The Case of the Termite Shields

When it comes to post frame building construction, I know a little bit about a lot of things. I get asked a lot of questions about how to solve post frame building challenges and do a pretty fair job of answering them. When I do not know an answer I feel confident in, I have no problems with doing the research or reaching out to an expert. Such was the “Case of The Termite Shields” (sound almost like a Sherlock Holmes story).

In this case, I went to “The Bug Doctor” Jerry Schappert of www.pestcemetery.com

Here was my question:

mr owl tootsie roll pop“We have a Building Official asking for a termite shield for a post frame (pole) building. The building utilizes pressure preservative treated columns embedded in the ground with a treated splash plank around the base of the walls. At the bottom of the steel wall siding is what is known as base trim, it is steel and extends outward from the splash plank 1-1/2″ with the outer edge being a downward bent lip. This should serve to function just like the steel termite shields we have viewed online. 4-5/8″ of the pressure preservative treated splash plank is visible below the base trim. There is a product called a plastiskirt which is vinyl and designed to wrap the splash plank. In your opinion, what would be the best design solution to protect the building from termites as well as to meet the requirements of the Building Code?”

The good doctor replied (in very short order I might note):

It sounds to me you’ve met the code already? What more does he or she want?  There are ‘pipe shields’ on the market but they are just basically what you describe. Pole barns here in Florida basically have very little code requirements and we are the termite capital of the world.  So without knowing what more the inspector is looking for I wouldn’t know how to answer.

Need a bug expert, try Jerry. Need a post frame building expert? I will give my best impression.

 

So You Want to Become a Post Frame Building Installer?

So You Want to Become a Post Frame Building Installer? I’ve dealt with a broad variety of post frame building installers over the years. Just like our clients, they come in all shapes and sizes, as well as all levels of price and quality. One of the better pole builders I have encountered was a gentleman named Tony Storm. I first met Tony back in my early days in the post frame industry when I managed the light gauge metal connector plated wood truss plant for Lucas Plywood and Lumber in Salem, Oregon. Tony was retired from his first career and needed a garage/shop to tinker in. He invested in a post frame building kit package from me, which he and his son constructed. They had so much fun with putting the building up, they decided to make it a profession. Along the way, they set aside enough money in two years of building, to pay for the son’s college education! Tony was pretty astute and I learned a few secrets from him. One of these I have shared previously: http://www.hansenpolebuildings.com/2016/02/strait-roof-steel-overhangs/. One of my readers recently wrote: “Hi my name is Stacy. This may be an odd request but I live in Calhoun, La and am just had a pole barn built on my property.  I was not at all pleased at the time frame nor quality of the finished product.  I started doing math in my head and am looking into starting a competitive pole barn business in my area.  The only one in my immediate area has terrible reviews with the BBB and I now see why.   My questions revolve around how and where you guys get your metal/ lumber/ garage doors/ etc.  Do you provide kits for other pole barn business owners around the country? I am not a competitor of yours and plan on covering only 50 mile radius of my home since this will be my second job to begin.  I was hoping for some advice on where to get the product and negotiating some prices to make them as profitable as I can. I look forward to hearing back from you.” To which I responded: We supply complete post frame building kit packages which include the doors. We sell to both contractors and end users. Our advantages – every building is engineered, we provide complete assembly instructions (designed for the average do-it-yourselfer) and all of the components are laid out on the plans, so there is no guesswork. Most builders prefer to have their clients buy the kit direct from us, then they contract only for the labor (typically at 50% of the price of the kit) to construct on a clear level site. This protects you from a client who stiffs you for the materials (it does sadly happen) and we effectively do the selling for you. Client pays for concrete. Builder provides nail gun nails. Considering a new part or full time profession? The building industry in general, and post frame specifically has a severe shortage of pole barn builders who can both think and who actually care about what they do. Want to find out more? Just ask, the advice is free. Mike the Pole Barn Guru

Save Me, My Trusses Do Not Fit!

Here is a case where investing in a post frame building kit from people who have actually constructed buildings is a huge asset (am surmising this is not the case, since this person sent the Hansen Pole Buildings Technical Support email address a plea for help).
Reader James writes: “I have a 24 x 60 pole barn. I pulled my outside dimensions from outside of skirt board now on my trusses are an inch and a half long on each side how can I fix this?”

Dear James ~

Since I do not know who supplied your post frame building kit package, I will have to do some guessing as to how your post frame building was designed. Typically questions like this can be answered by whomever provided your plans and materials – and if it is an engineered building, the building engineer should be consulted as well.

A quick solve for anywhere in the country and any method of construction – to the eave outside of all corner and sidewall columns, attach a pressure preservative treated 2×6 from grade, up to the level of the trusses. In most cases two 10d galvanized common nails spaced every nine inches will be an adequate connection. As these 2×6 will be in contact with the ground, they should probably be treated to at least a UC-4B standard. Your building’s skirt board and any other exterior mounted framing can now be attached to the face of these 2×6. Using this method allows for siding to be installed normally, without any undue compensations to get it to lay out properly.

Another possibility – provided the heel plates of the prefabricated light gauge metal connector plated trusses are not in the way, you could cut 1-1/2″ off of the end of each truss, making them 29’9″ to match the width of your building from outside of column, to outside of column. In no case cut through a steel truss plate.

Or, (in cases with recessed or joist hung purlins) attach the eave girts between the overhanging 1-1/2″ of each truss. The end connections end up being a bit trickier here as it requires nailing through the end of the truss, into the end grain of the eave girt.

With stacked purlins, the eave girt can be nailed to the outside face of the columns above the truss.

If the chosen path is any of the last three choices, when the endwall steel is placed, start the first panel of steel 3/4 inch PAST the corner of the building. The corner trim will cover this and it eliminates having to do a lengthwise rip on the last sheet of steel on the opposite corner.

Mike the Pole Barn Guru

Six Reasons to Not Invest in a New Hansen Pole Building

No, I did not hit my head, there are some legitimate reasons not to invest in a new Hansen Pole building.

1. Land

For some it is they do not own “the dirt” and in a few cases never will. For those who do not yet own the dirt, or don’t have it picked out, I would encourage you to get the dirt first. Then design your new post frame building to best fit with the needs of your property.

2. Finances

Other people need funding for their projects. Some of these folks have inadequate credit scores to be able to qualify for financing. For the first group, options are available (http://www.hansenpolebuildings.com/financing/). For the second, focus serious efforts on improving your credit score – at times negative reports on credit scores can be cleared up.

 

The top two are fairly general and could be applicable to most any post frame building kit supplier or builder.

Being specific…..

3. You don’t like us.

As much as we would like to believe everyone should be friends, there are some cases where two people just do not click. The Hansen Pole Buildings team endeavors to provide “The Ultimate Post Frame Building Experience™”. To every client, every time. Should you experience unresolvable issues, please contact Eric@HansenPoleBuildings.com immediately. It is a quick and easy fix to reassign you to a different Building Designer.

4. We can’t deliver fast enough.

Every post frame building kit package Hansen Pole Buildings provides is 100% totally custom. It is designed just for you to best meet with your needs as well as satisfy the climactic conditions (wind, snow, seismic) imposed by your Building Officials governing your specific site.

We are also busy.

Our clients understand it is ultimately “All About the Building”. Hansen Pole Buildings does it right. Right, however, always wins in a race against quick and wrong, as the cost in time, effort and money to fix wrong is painful.

5. We cannot provide what you want.

If it is structurally sound and a post frame building, we can provide it. We cannot and will not build your new post frame building for you. We can give you a fair idea of estimated hours for construction, what we feel is fair market value for erection and assist you in finding possible builders whom you may vet. We also will not agree to under-design your building. No matter how much money you think it will “save” you.

6. Our Buildings Are Too Expensive.

As compared to what?

It could be everyone’s prices appear to be out of budget. If this is the case, your Hansen Pole Buildings’ Designer can assist with alternative such as all or partial financing, adjustments of dimensions and/or features to arrive at the best end results.

If we have not provided evidence of our benefits to you being of more value for your investment, then we have not done you the service we mean to provide. If we have not adequately expressed this, please let us know immediately what we have done wrong, so we do not repeat our errors.

I firmly believe Hansen Pole Buildings offers the best possible value for the post frame building investment. We continue to make improvements in our buildings and our systems to provide, “The Ultimate Post Frame Building Experience™”.

Hire a Local Engineer and Work With a Lumber Yard?

Should I Hire a Local Engineer and Work With a Lumber Yard?

Let’s hope not. Here is the email which triggered this article:

“Hello, 

I am building a 50×60 pole building with 22′ eaves. I’m shopping right now to either hire a local PE to design the structure and work with my local lumber yard to supply the package or maybe buy a kit like the ones you sell. Do you do custom sizes? Would you be interested in quoting my project?

I live in Lake Stevens, Washington.

Sincerely, 

Tim”

DEAR TIM ~

Thank you very much for your interest in a new Hansen Pole Building.

About Hansen BuildingsThe heart of our business is providing totally custom designed post frame buildings of any size, as such your contact information has been forwarded to one of our senior Building Designers who can assist you with the process.

Some advice – hiring a local engineer to do the structural design will result in one thing for certain, and probably a second. The certainty is you will spend probably 8 to 12% of the value of your building on the engineer. In our case, the engineering is included with your investment in a new post frame building kit package. Our engineers do thousands of buildings for us, so your engineering costs are minimal.

The second is – most engineers are not specialists in post frame building design. You might get a great deal on the engineering itself, only to later find out your spent thousands (or tens of thousands) of dollars more than was necessary due to your engineer not being familiar with the most current advances in post frame design, as well as the plethora of materials options which could be incorporated to make your building the most efficient structure it can possibly be.

Your local lumber yard is most probably like most – they are nice, friendly, hard working folks, who know a little bit about lots of things. However, they are not going to be post frame building experts. The outcome, again, is probably going to prove to be one of less than ideal results.

My encouragement, whether you eventually invest in one of our post frame buildings or not, is to deal with folks whom you know are truly experts. We’d like to believe somewhere approaching 20,000 successful buildings might be heading us in the right direction.

Mike the Pole Barn Guru

Looking for a Contractor to Build a Post Frame Home

More and more consumers are seeing the practicality, unique architectural and energy savings advantages as well as cost savings from a post frame home. This includes loyal reader Brian who writes:

Engineer sealed pole barnHello, my wife and I are considering building a post frame home. We contacted a designer who actually had plans for a home that is close to what we were wanting. He suggested it may be difficult to find a builder that would be comfortable building a pole barn home – so that is why I am contacting several builders to develop a list that could be considered in the future if we move in this direction.

Please find the attached plans he provided as a reference and let me know if this is a project you would be willing to tackle. Although we have not bought land we are currently looking in Warren and Clinton counties in Ohio.

Dear Brian: Thank you very much for your interest in a new Hansen Pole Building. We design and provide building plans, installation instructions and materials for totally custom post frame buildings. Your proposed plan (as would be any other plan) is totally doable as a post frame (pole barn) home.

What we do not do is build. Our buildings are designed for the average do-it-yourselfer to successfully construct their own beautiful building, which is why the majority of our clients do their own work. Those who construct themselves, end up with a far better finished result than what you would get from any builder.

In the event you do hire a builder (technically an erector), any builder who can and will read and follow the plans and instructions should prove capable of doing a satisfactory job. Given your geographic location, just a caution based upon experience – there are members of a well know religious group which construct many post frame buildings in your area of the country. While their prices sound too good to be true, it is our experience they do not always build to the provided plans or follow instructions. Again, just a caution. Otherwise a capable erector should be able to construct the building shell for about 50% of what your investment in the materials is.

About Hansen BuildingsI am not normally a fan of “canned” plans for any type of construction, as they are rarely going to meet with the true needs of the client. My best advice is always going to be to determine the spaces needed, determine how large each of those spaces need to be. A good way to find the right size of rooms is to take a note pad, writing tool, and a tape measure and start visiting open houses and home tours.

Once room needs and sizes have been determined, starting putting the pieces of the jigsaw puzzle together – place rooms where they are most efficiently grouped for ease of access and use. This may take some adjustments of individual room dimensions, however the resultant will be the most effective. Now, and only now, should you put the “box” around the contents!

 

 

Thoughts on a Floor

Thoughts on a Floor:  

Brought to you by reader ANDREW in LEBANON:

“Hi! I am looking at purchasing a post frame building to use as a new home. We are well on our way with being under contract for the land and one of your recommended builders is meeting me at the site this week to make sure the land is good/flat enough.

I will be hiring the construction of the exterior and then build the interior myself.

With that said, here is my question (I will do my best to describe it by typing.) Instead of pouring a huge concrete slab (building will be 60×96), I want to do a typical crawl space to be easier to run plumbing and such, plus make changes as needed. Also, concrete slabs are expensive, especially for 5,000+ sqft. What are your thoughts? I will run 2×10 side by side (doubled up) the entire 96′ length supported every 12′ by concrete footers and building columns. This will be roughly 24″ from the ground (haven’t fully decided on the height yet). Along with that, going to 60′ width, I will use 2×8, 16″ OC. I forgot to mention, along the inside perimeter of the posts, I will be running 2x10s attached to the posts. The ends will have the 2×10 laying on top (along with concrete/building posts every 12′), and the joist ends resting on the eave sides.

With all that said (hopefully legible and not rambling), what do you think? I think it is a pretty solid plan and will not only save a lot of money by not doing a slab, I will effectively have a crawlspace. Yes, I know this will raise the entry points so the door looks like it will be off the ground 3+ feet, but I will be putting a decent sized deck on the front as well as a smaller one on the rear point of egress. A quick reply would be greatly appreciated so I can hopefully discuss more with the builder as well as for my own personal planning purposes. Thanks a lot!”

DEAR ANDREW:  I am a fan of living on wood instead of concrete, so crawl space makes total sense to me.

The right way to do this is to have your floor incorporated into the original engineered plans for your building. This will assure you of several things – the footings will be designed with an adequate diameter to resist settling (last thing you want is to have a post or posts sink. It also will make sure the size of the members will be adequate to support the loads both from a weight bearing standpoint as well as deflection. Your doubled 2×10 idea for supporting the floor joists is hugely under designed and it is very possible it would create a failure condition, not something you want to have occur in your new home.

Floor deflection is an under discussed realm (you can read more here: http://www.hansenpolebuildings.com/2015/12/wood-floors-deflection-and-vibration/). 2×8 #2 at 16 inches on center and 2×10 #2 at 24 inches on center are going to have virtually the same spanning abilities as floor joists, however the 2×10 floor will meet L/480 requirements for deflection, while the 2×8 joists just barely meet the code minimum of L/360. The added plus – the 2×10 joisted floor takes 16% less board feet of lumber and is less expensive to build!

Why We Do Not Recommend Any Builders

Hansen Pole Buildings receives numerous requests every day from potential new post frame building owners, who are looking for a builder (in my terms technician) who can assemble their building kit. I am going to do both of us a favor and explain why we do not recommend any builders.

Hansen Pole Buildings is a supplier and a supplier only. We do not construct buildings anywhere for anyone – even ourselves. Our new post frame building addition of 30 feet x 96 feet is being contracted out to a technician, who happens to do erection work for several of our clients. When you order your new post frame building from us this is clearly reiterated in writing and approved by you:

 

“Purchaser is purchasing a materials only pole (post frame) building package, designed per Seller’s plans. This is not a precut building, nor is the structural design to be determined by Purchaser or Purchaser’s agents. Assembly, by Purchaser or Purchaser’s agents, including measuring, cutting and the use of tools, will be required. Some components may come all or partially assembled (e.g., entry doors are most often shipped as pre-hung), however most items (such as, but not limited to, sliding and overhead doors) require the assembly of sub-components. Steel roofing, siding and trims often require cutting and/or splicing. It is the discretion of Purchaser or Purchaser’s agents to utilize the materials provided so as to minimize splices, as well as the creation of waste or scrap. No overage of any materials is provided for in this Agreement.”

Good clear agreements make for good neighbors. We do not want anyone to have their feelings hurt due to a misunderstanding.

Upon request, once you have ordered your new post frame building kit package, we can assist you in finding the names and contact information of two or more possible builders who can construct within your predetermined budget – however it is totally your responsibility to vet them out. Here are the seven steps to not getting yourself burned by any contractor, follow these: http://www.hansenpolebuildings.com/2013/07/contractor-6/ and require a performance bond and you will greatly limit your risk of not getting the finished product you expected. Here is Performance Bond information: http://www.hansenpolebuildings.com/2012/07/contractor-bonding/.

In a past life, I was a post frame building contractor based in the Pacific Northwest. We were blessed with many totally awesome subcontract crews who did great workmanship, as well as were good at building quality relationships with our clients.

Even with these excellent crews, it seems like about once a year they would absolutely “hose” (technical term for FUBAR) a building. I’d ask them why and the answer was typically they had no idea, just that it went wrong.

I share this because you might very well contract with the builder who has the best reputation for quality and has a fair price. Same builder could have one of those weeks coincide with your building and result in a less than satisfactory experience. We (and I) would prefer not to become a mediator for problems we had no hand in causing, even more so since we had no financial interest in the agreement between you and your builder of choice.

Not my circus, not my monkeys.

Converting a Pole Barn to a Residence

One trend I have seen over the past ten years is folks purposefully designing post frame buildings to homes – they are recognizing the advantages, among them savings in foundation costs, speed of construction, flexibility of design and ability to insulate. Along with this, more and more post frame buildings are being re-purposed from pole barns to living spaces. This becomes a challenge when advance thought was not put into the original building design as to what future uses might bring.

Reader MARK from FOSTER is in the midst of wanting to do one of these conversions and he writes:

“DEAR POLE BARN GURU: I have a pole barn that has foil bubble wrap on both roof and wide walls. I’m wanting to convert this into living space. I have 7″ of space in the walls to put insulation. So to insulate this can I add un-faced batt insulation and then drywall. I know that the foil-bubble wrap is waterproof so I don’t think I need a vapor barrier before the drywall because if any moisture was able to get in, it would not be able to get out. For the ceiling do I add Faced Batts with the facing point towards the heated space and then Drywall. You are the Guru and I want to see what your experience has to say. Thanks for your time.”

DEAR MARK: As a living space, your pole barn (post frame building) will generate a significant amount of moisture which you do not want to have get into the walls. This means putting a vapor barrier on the inside face of the wall insulation. You will want to make sure the un-faced batts completely fill the insulation cavity, so you will need material with a greater thickness than the R-19 six inch batts sold at your nearby big box store.

Now the challenge – you need to poke holes in the reflective wall insulation to allow any chance moisture from within the wall to escape. Trapping water vapor between the two vapor barriers will only lead to eventual grief in the form of mold, mildew and/or rot.

For the ceiling, it is essential to ventilate the dead air attic space you will be creating. Ideally your building was constructed with vented eaves and ridge and life will be good. You will want to use either un-faced batts, or ideally blow in insulation above your ceiling. Do not place a vapor barrier in the attic – as you want moisture to be able to rise into the attic space and be exhausted through the ridge vents.

 

Planning a new post frame building? If your building will have dimensions which could ever lend themselves to some or all of the building being used as conditioned space (heated and/or cooled), it would be prudent to design for it now, rather than having to face doing more work (as well as spending more money) at a future date.

Making Your Own Glulam Columns

Should I Make my Own Glulam Columns?

I’ve been internet chattering back and forth with a gentleman named Chris, who is probably never going to order a Hansen Pole Building, but it is okay – we have thousands of clients a year who are knocking at our doors (figuratively) ready to place their orders.

Total Disclosure – I do not get paid, nor does Hansen Pole Buildings, LLC get any sort of financial compensation in return for my endorsement of a particular product or vendor.  If I like a product, I will tell my readers straight up about it. Same goes the other direction.

Here is an excerpt from our most recent discussion:

Chris: “And I was going to make the laminated posts gluing and baking them, I have a local lumber company (not Lowe’s or HD ) they have good treated lumber that can be placed in ground.”

Me:  “The most important things to me are people getting great buildings and good value for their investment.

I believe you trust in my judgment. Please do you and me both a favor and buy true glulaminated columns.

Here are just a few reasons….

The 2×6 they use to make them is nearly half again stronger than anything you can buy at the lumber yard;
They use glue which is designed to hold up – even under ground and in wet conditions;
In order to get a true glue bond, the wood must be planed, then glued within 24 hours;
They have the equipment to press them during curing – which keeps them nice and straight;
The time alone you save will more than pay for them.

There are plenty of ways to save money on your new post frame (pole) building kit – building your own glulaminated columns is not one of them.  If you want to save both time and money (and end up with a better building), spend a few hours browsing about the nearly 1200 articles I have written and/or the over 600 questions I have answered from my loyal readers.

Have an idea and want to know if it is practical or not? Run it past me…. I’ll give you the straight story, every time.

Finishing the Interior of an Existing Pole Barn

Finishing the Inside of an Existing Pole Structure

There are literally millions of pole structures (aka post frame buildings or pole barns) in existence in the United States. Most of them were constructed without a thought as to future use, beyond their immediate need. Here is a story about one which actually did have some foresight!

barndominium-interiorDEAR POLE BARN GURU:  I have a customer who wants to finish the interior of a pole structure with a steel panel ceiling and drywall over framed walls. The building is 30’x40′ with 12′ ceilings, trusses on 8′ centers that are designed to carry the load of metal panels and blown insulation. The entire building, roof and walls are sheeted with 1/2″ osb. The roof is felted with perma felt and the walls are covered with Tyvek house wrap. The ridge is vented end to end and the 2′ overhangs are 12″ wide with vented steel soffit every third panel.

I plan to use 6″ fiberglass batting in the walls and blown-in insulation in the ceiling. The structure has 2 o.h. doors, 9’x10′, a walk in 3′ door and 3- 3’x3′ windows. It will be used for storage mainly with an open 15’x30′ man-cave area with a wood stove for heat when needed but not full time.

We are in southwest Iowa and I’d like some advice on proper moisture barrier if you’d be so kind.
Thank you, TOM in WOODBINE

DEAR TOM: Your customer has done things fairly well – which sadly doesn’t often happen.

The roof is in good shape for control of condensation under the roof steel. The OSB and felt should take care of this nicely. The attic may be under ventilated, with only having venting in every third soffit panel. Standard vented soffit usually will provide only about five square inches of intake per square foot of vent. With 160 square feet of sidewall soffit, your customer probably has about 800 square inches of intake (5.55 square feet), which might be adequate, but I sure would have been happier if he had all vented soffit panels.

Steel liner panel ceilings are always problematic –read more about them here..  http://www.hansenpolebuildings.com/2013/08/steel-liner-panels/

In the event your client is dead set upon a steel ceiling, make sure to do everything possible to reduce the humidity inside the building, so as to prevent condensation on the underside of the ceiling. If the concrete slab does not have a good vapor barrier under it – the floor should have a high quality sealant applied to the surface to reduce moisture coming through the floor. A test to determine if the vapor barrier is adequate or not is to leave a wrench on the floor overnight. When the wrench is removed in the morning, if there is a dark silhouette of the wrench on the floor, then moisture is passing through and needs to be controlled or eliminated.

On the walls the housewrap will keep moisture from the outside world out. Use unfaced fiberglass for the wall insulation, then cover all of the walls with 6 mil clear visqueen, read here:

(http://www.hansenpolebuildings.com/2013/07/moisture-barrier/).

The area to be heated with the wood stove is also going to be very prone as a high moisture area. The dry heat from the wood stove will draw excess moisture through the floor (again back to the floor), so additional ventilation may be needed in this area.

Good luck and let me know how it all turns out. Pictures are much appreciated, especially the man cave!

Mike the Pole Barn Guru

Misguided Stick Frame Builder

Few things drive me nuts more than self- serving advice columns. In my humble opinion, if one is offering advice as an expert in a construction field they should be open to a plethora of possible design solutions.

The following article appeared October 1, 2016 at www.kpcnews.com and is copied in its entirety without edits:

“Pole buildings can be insulated

  1. I have a large pole building and want to temper the inside just above freezing. I want to park equipment so they will thaw out and also want to store liquids to keep from freezing. I have had friends that have spray foamed the inside and it has been very costly. I also read that the spray foam doesn’t want to be left exposed. I know it’s an age-old question but what is the cost effective way to insulate my pole building? — Ken of Churubusco 
  1. There are several different approaches to insulating your pole building.Post footings do not provide a continuous thermal or structural footing so to think that the walls or ceiling of your pole building are going to have the same performance as a conventional built building is not correct.

Stick-Frame-Construction-150x150Yes, you can dig continuous footings between the posts and, yes, you can frame walls between the posts to try to emulate the characteristics of a conventional building but at that point probably you should have built it conventionally in the first place.

That being said, you’re looking to add some insulation to help with heat loss and to help air seal your pole building enough to be able to add some heat and lightly heat the building.

I am assuming the building has steel laid over wood purlins attached to posts basically 8 feet on center and the ceiling is open with trusses 4 feet on center. Closed cell foam is the best choice but costs more than open cell mainly to help stop moisture from soaking into the foam.

Normally I would, because of costs, use open cell foam and spray 2 inches to insulate and air seal. If additional insulation is desired then add fiberglass insulation with some sort of finish wall with a vapor barrier. The typical application is to line the ceiling with steel and blow cellulose insulation above to insulate the ceiling.

 Jeff Deahl is past president of the Builders Association of Northeast Indiana. Questions for the Square Corners column may be submitted at ba-ni.com or email info@ba-ni.com

 I suppose what rankled me the most is the comment, “at that point probably you should have built it conventionally in the first place.” The author is a stick frame home builder, rather than having done the research, he is merely making suppositions.

It doesn’t take a rocket scientist to design a post frame (pole) building which is thermally efficient – more so than close to (if not all) conventionally stick framed buildings.

And the post frame building will be less expensive.

A building’s foundation system has nothing to do with the thermal performance of the walls and ceiling. To think so, is truly misguided and this author offers no proof, just a slap down.

Stick frame construction is less thermally efficient due to the tremendous number of framing members which are in contact with both the outside and inside walls. Post frame construction affords a deep wall insulation cavity and can be designed with fewer direct thermal transmission points (thermal bridges) than stick frame.

I don’t just blow smoke in my articles, I can back up what I write with evidence: http://www.hansenpolebuildings.com/2013/08/thermography/

Do it Best

Do it Best®

I get a lot of people asking some great questions of the Pole Barn Guru. Some of which take some lengthy answers, in order to adequately make the point. Here is one which involves the thought of doing business through a Do it Best® store would add a level of security.

For your reading pleasure……

DEAR POLE BARN GURU: I have shopped for a pole barn for several months. I wanted a simple 30x40x10. I got several quotes and put a lot of thought into the project. I was concerned about “fly by night” builders. I wound up choosing a “doitbest” retailer, hoping that they would have the backing in case something went awry. The builder arrived yesterday to begin construction, I had to leave for work but my Dad came over to oversee the project. He noticed that when they set the poles, they did not use any concrete below or around them. The builder just backfilled the holes. My question is this; Is this an acceptable practice? They have not put the sheet metal on yet, should I stop the process until we discuss this? I am not an engineer or contractor, but it doesn’t seem like a good idea to have no concrete around or under the posts. Please advise? CHRIS IN CARTHAGE

DEAR CHRIS: If you shopped for several months and got several quotes, it sounds like you did put a fair amount of thought into your new pole barn (post frame building).

Do it Best® bills itself as the “World’s Largest Hardware Store”®. It is a cooperative which is owned by its approximately 3800 members, making it the only US-based full-line, full-service, member-owned distributor of lumber, hardware, and building materials products in the home improvement industry. Each store is independently owned, so dealing with a Do it Best® location gives you only what little protection can be afforded by the store you did business with. It is not like The Home Depot® or Lowes®, where every location is corporately owned and you are afforded the protection of a multi-billion dollar chain.

Regardless of the builders affiliation or lack thereof, it is important to do due diligence in thoroughly vetting them out. I’ve shared this many times in my articles, but apparently it has been under utilized: http://www.hansenpolebuildings.com/2013/07/contractor-6/

drilling-hole-150x150On to your question. Placing no concrete under or around the building columns is probably a recipe for disaster – no building of any sort is going to prove to be better than its foundation. Although it is possible to engineer a foundation without concrete, it would involve enough extra efforts (and usually some very deep holes) in order to make it work. The concrete in the holes serves numerous functions – it has to be able to adequately distribute the weight of the building and any imposed vertical loads (like snow and ice) into the soils beneath the building to keep it from settling. This is a prevalent problem with most post frame (pole) buildings, where either no concrete or an inadequate amount of concrete has been placed below the columns. Building codes require a minimum of a six inch thick footing. Having the concrete up the sides of the column, above the footing aids in prevention of uplift (your building being sucked away) as well as overturning, neither of which would be a pleasant experience.

Here is a recent instance of a new pole building owner with a similar experience to yours: http://www.hansenpolebuildings.com/2016/08/pole-barn-columns-settle/

In my humble opinion – you should stop the builder immediately and demand he provide an engineer’s certification of the adequacy of what he has done for a footing/backfill. He is not going to be able to do it, so the next step is to have him provide an engineered repair (which means it is wet sealed and signed by an engineer) and then make sure he actually does the work prescribed by the engineer.

I am going to guess the building which you have invested in is not an engineered building – where the plans have the “wet seal” and original signature of a RDP (Registered Design Professional – engineer or architect). This affords a new building owner the assurance someone who actually has the knowledge of structural design has verified the adequacy of the overall building design as well as the strength and load carrying capabilities of every member and connection. I also cannot imagine your building is somewhere structural building permits and site inspections occur – if it is, then get your local Building Official involved, as it is his or her responsibility to look out for the safety of those who are investing in new construction.

Good luck, and let me know how it turns out!

How to Avoid a Disastrous Pole Barn Project Part III

How to Avoid a Disastrous DIY Pole Barn Project

This is part three in a three part series on how to better ensure a great pole barn project, by getting rid of the pitfalls.

I’d like to thank Bret Buelo of Wick Buildings for the basis of this article, which appeared on the Wick Buildings website (www.wickbuildings.com) August 12, 2016. Information from Bret’s article appears here in italics along with my own input as well. Wick Buildings is highly rated by the Better Business Bureau and has been an NFBA (National Frame Building Association www.nfba.org) member for decades.

Part of the fun of any DIY project is learning new skills to complete a project. However, there is a point where you venture too far into the unknown and begin to cost yourself time, money and perhaps even your own personal safety.

If you’re a DIYer with lots of time on your hands and potentially cash to burn, by all means, you can take a shot at any pole barn project. But if you’re on a budget and time is of the essence, there are tipping points when you can find yourself in over your head.  Many pole barn jobs can get extremely complicated, and if you’re not careful, can lead to some significant mistakes.

We reached out to Gordon Sebranek, who manages the Engineering Department at Wick Buildings, for some insights. Following are the last three of nine potential pitfalls he outlined to help you decide if you’ve bitten off more than you can chew.

Go to parts one and two to get up to speed. To continue:

  1. Don’t Know the Specialized Building Tricks

General building training and experience is great, but there are also specialties within post-frame construction that require a different knowledge base.  For example, free-stall dairy setups involve a number of unique parameters. And these specialized projects tend to also require specialized equipment.

Guru comments: For those rare and unique projects, this may be the case. The Hansen Pole Buildings Construction Manual includes numerous tricks to a successful end result which are the product of experience of those who have constructed over a hundred thousand buildings. They are tried and true methods which allow the average DIYer to build like a pro.

  1. Lacking Time and Money to Make Mistakes

This category is entirely subjective. As we mentioned earlier, if you have unlimited time and money, then you’re never really in over your head. But if you are on a tight timetable or budget, you may soon find yourself in some serious soup.

Gordon notes that the length of a project depends on the specifics of the size and complexity.  He’s seen an experienced person design a 30 x 50 building in two hours. “Some jobs might take six weeks, because they’re very involved,” he said.

Project durations become longer depending on your experience level, too. Do you have the patience to teach yourself how trim out a building nicely, and to correct mistakes if and when they happen?

Guru comments: Tight time tables often occur when trying to hit the window of opportunity for a high quality post frame building contractor. When I was a building contractor, there were certain times of the year when it could be six to eight months before we had a construction crew available to put up your building.

Put structural design in the hands of the experts and you will be time and money ahead. Please – I implore you – do not attempt the structural design of a building on your own unless you happen to be an RDP, and even then, you might be ahead to farm it out to the specialists who do nothing but post frame buildings every day.

Doing things like cleanly installing trims is as easy as opening your Construction Manual and looking at the details and photos which walk through even the most challenging of applications.

And in construction mistakes can and will happen. I used to employ the best post frame building crews in the industry (in my past life as a pole building contractor). Even then, I’d see a crew blow half a day of time on something which could have been handled in five minutes by contacting the office for assistance.

This is why Hansen Pole Buildings offers free unlimited technical support via email during the construction process. 99 out of 100 times the answer was right there in the Construction Manual to begin with, but when something goes awry, it helps to have the experts near to give you the answer you need to quickly move forward.

  1. Don’t Know the Safety Requirements

You’re in over your head when you don’t have the appropriate safety tools to protect yourself on difficult jobs. Or, more accurately, when you don’t know what you need to do to protect yourself.

Wick Builders and the outside contractors that they work with adhere to OSHA requirements. Safety is the top priority on every job. It’s our opinion that if you don’t know the safety requirements for every job, then you are in over your head.

You only go around once, folks. Don’t short-change the safety requirements for a construction job.

Guru comments: I heartily agree. Safety is paramount in any construction project – my Dad was killed in a construction fall in 1988, so I am very sensitive towards avoiding injuries. OSHA (or state versions thereof) has many good ideas for safety and they consume innumerable hours of having to do paperwork – all of which the consumer pays for when they hire a contractor. For the most part, use common sense and play it safe. If you can fall more than a few feet wear a properly secured harness.

Most post frame building projects can (and should) be built on a DIY basis. This is a great way to take pride of ownership and get more out of your building dollar.

Once again I’d like to thank Wick Buildings for their contribution to this blog series, and to the fine art of pole buildings in general.

F Channel and Enclosed Soffits

My early days of post frame (pole) buildings came in the Pacific Northwest. In the early years, rarely did buildings have any overhangs…at least not beyond a few inches of roof steel extending past the siding.
When building did have overhangs, they were always “open”. Open, in this sense, did not mean birds and other critters could fly into the building through them, but rather they had no soffits.

With an open overhang, when one stands beneath and looks up at the underside of the overhang, the supporting substructure framing is visible, as is the underside of the roof steel, or roof sheathing.

A decade later and a transition from a provider of post frame building kit packages, to being a pole builder and clients began requesting their buildings to have enclosed overhangs. With a minimal investment over open overhangs, plus the advantages of being very attractive and limiting locations for nests of both barn swallows and wasps – it was (in my mind) a no brainer.

In researching how others were installing soffits, I found the majority use a piece of trim called an F and J up against the building sidewall.

f channelPicture an F channel with the downward leg being attached to a horizontal piece of wall framing, usually by nails. The horizontal “legs” of the F receive the soffit material – usually vinyl, steel or aluminum. From the end of the short (and lower) horizontal leg of the F channel, is another downward leg (envision an inverted J). The sidewall steel then slides up into the J from below.

All of this appears to be a quick and easy install. Nail a single 2×4 against the outside of the columns, attach the F and J to it and slide the soffit panels into the F channel.

Now the problem with this (as happens with quick and easy) – the soffit panels are not attached to the F. When the breeze begins to blow, the soffit panels vibrate in the F channel, making noise. As wind speeds increase, the soffit panels can actually be blown out of the F – creating all sorts of challenges.

So how did we solve the challenge?

Instead of a single 2×4 nailed to the face of the columns, we took two 2x4s and nailed them together to form an inverted L. The short leg of the L now gives something solid to attach the soffit panels to. Below the soffit panels an inverted piece of J channel trim is installed, easily attached to the vertical leg of the 2×4 L.

I’ve now experienced several thousand soffit installations using this procedure and have yet to have a report of a single soffit panel being blown out!

Success.

Four Foot Entry Doors

One Foot

And it isn’t the left or the right one!

simple-pole-barnActually the one foot I have in mind is the difference in width between a standard 36 inch width entry door and a 48 inch wide one. Oh what a difference the extra foot makes!

And most of the difference is not in cost. It is in functionality.

With an insulated commercial steel entry door with steel jambs, all factory pre-painted, the difference in investment between a “standard” width door and one with far greater flexibility for access and egress (a.k.a. 12 inches greater in width) is going to be somewhere around $150.

So, what good does the extra foot of width do exactly?

In my case – it has kept my knuckles intact when taking my 1986 Yamaha Venture Royale motorcycle through. I don’t always want to open up an overhead door on my shop to get my favorite scooter in or out. If it is hot outside, I want to keep my shop cool. If it is cold out, I want to keep it warm. Far less temperature change occurs when all I have to do is open the ‘person door’.

I’ve tried to get my bike through a three foot wide door. Yes, it can be done, however not without pain and possible damage to both my feelings and my ride.

Enjoy garden work?

The extra foot of door sure makes it easier to get things like a wheelbarrow in and out.  And how about the beast which makes your garden look like it could be on the cover of House Beautiful…the garden tiller. Running it through a four foot door is a snap. The hand lawnmower too.

Then there is my daughter, Bailey, the professional horse trainer. She will quickly vouch for the ease of getting saddles through a four foot wide entry door, rather than struggling through a narrower one.

Regardless of whom you select for your new pole (post frame) building provider – if you aren’t at least being offered a four foot wide door and being explained the advantages, do yourself a favor and suggest it!

The knuckles you save, may very well be yours!

Why DIY Clients Do Great Work

Over 50% of all Hansen Pole Buildings kit packages are constructed by the building owners themselves. If you are amongst these stalwart folks, kudos! Odds are your new post frame building will have a far superior end resultant than what you could or would have paid your hard earned dollars to have a builder do it for you.

The #1 reason – you care!

If you are among these folks, I praise you for your willingness to actually do things like reading the plans and following the instructions.

The contractor of the building in the photo did have a few challenging moments, which might have been less of a challenge had he followed along as we anticipated he would. Those will be glossed over and we will take a quick look at one of the photos provided by the proud new building owner.

contractor built building

Please try to ignore the installation on the fascia trims.

Getting on to business….

Looking at the sidewall steel panels, see how nearly every lap is sticking up? This is a common, yet easily solved challenge which I recently wrote about: http://www.hansenpolebuildings.com/2016/05/cool-solar-stuff/.
The builder even went to great lengths to make the problem worse, by placing a screw through the tops of some of the overlapping steel ribs. This is not a solution espoused in our installation instructions and frankly, I don’t know where he got the screws from, as we did not furnish any for this purpose.

Why is this worse? If someone now tries to resolve this, they may end up with some holes in the underlaps which can be seen past the edge of the overlapping panels.

panel lapsRun your eyes up to the top of the eave walls – where screws have been placed on both sides of each high rib. Again, this is not a screw pattern which is shown on our plans or in the instructions. Although there ARE some places for screws to be placed like this – this happens to be none of them.

Now kindly turn the corner and look at the peaked endwall.

See the line of screws which are even with the sidewall eave line? I will give you a moment.

See how they stop about six feet in from the corner?

Not how things were anticipated, this line coincides with the end truss bottom chord and should have run all of the way to the corner.

screw lineNow, move your eyes down a row of screws. At nine feet in from the corner, the screw line has a jog in it of about two inches. I won’t even ask how.

The building is completed and will serve its intended function admirably (at least providing the builder DID put screws on each side of the high ribs where they were supposed to go). The client appears pleased with the end result, so we smile and move forward.

I can honestly say in the thousands of building kits sold by Hansen Buildings and constructed by the building owners, I just have never seen screws placed quite like this.

Now for the #2 reason: Because they cared!

About Steel Galvanization

When it comes to steel, we talk a lot about galvanization. Many post frame building products are galvanized to prevent premature decay. These include fasteners (screws , nails, nuts, bolts and washers), engineered steel hangers, the pressed in steel connector plates for trusses and components for sliding, overhead and entry doors.

Every year, steel corrosion costs the economy a small fortune. Corrosion, also known as rust, is a natural process which occurs when steel is exposed to the environment. It can be slowed, however, with a protection technique called galvanization, which is the coating of steel with a layer of zinc to slow the corrosion process. Zinc is used to protect steel because the zinc layer rusts more easily than steel but also rusts much more slowly than steel. Therefore, the underlying steel remains safe from rust for many years.

galvalumeThere are two types of galvanizing: continuous and batch. Continuous galvanization occurs when zinc is applied to a ribbon of steel as it passes through a bath. This steel passes through the bath at very high speeds and is only in the bath for two to four seconds. Once it has been galvanized, the steel is then shaped into the final product. Despite this high galvanization rate, continuous galvanizing is limited in the fact that only very thin, flexible sheets of steel are able to be galvanized in this way. This limitation is due to the fact the steel needs to remain flexible so it can be formed and shaped later.

Objects which have been galvanized in this manner include items used for roofing and siding sheets.

Batch galvanizing, also called after fabrication galvanization, is different from continuous galvanizing in that the steel is first shaped into its final shape and then immersed in a bath of molten zinc. Although batch galvanizing is not as fast as continuous galvanizing, one advantage is any shape of metal can be galvanized in this manner.

The three steps in the galvanization process are preparation, galvanizing, and post treatment. The preparation step consists of immersing the steel in three different cleaning baths prior to galvanization. First, the steel is immersed in a caustic cleaner, which is an acid bath which removes all dirt and grease. After being rinsed in a water bath, the steel is then cleaned with a pickling acid (usually either hydrochloric or sulfuric acid) to remove rust and mill scale. The steel is again rinsed with water. The final step the preparation process is soaking the steel in a flux solution, which cleans the steel of any oxidation which has happened since the pickling step and protects it from further oxidation before it enters the galvanizing bath.

The galvanizing bath consists of a minimum of 98% molten zinc heated to a temperature of around 850˚F. Once the steel reaches bath temperature, the zinc in the bath chemically reacts with the iron in the steel to form the layers which protect the steel. It usually takes less than ten minutes for the steel to reach bath temperature and to react with the zinc. The steel then undergoes a post-treatment process which varies with the facility. One of the most common post-treatment processes is quenching, which is when the steel is soaked in a quench tank to make a layer which protects steel during transportation.

Now you know how important galvanization is to the longevity of steel!

Tru-Log Sided Pole Barns

We have a certain percentage of our clients who are looking for log siding for their new post frame buildings. Usually these folks already have a log home on their property, or their new pole building is going to be their home and they want the ‘log home’ look without the challenges associated with real logs.

Actual wood log buildings have a quaint, authentic look, but require vigilant maintenance at least every two to three years, and sometimes more frequently. This routine maintenance and upkeep is not only costly, but time consuming.

I’ve always believed post frame buildings should be as maintenance free as possible, and now there is a way to make this happen and give the authentic, genuine log look – TruLog™ steel log siding!

At a minimum, wood logs require staining, sealing and replacement of any cracked or damaged chinking every two to three years. Rotted logs may need to be replaced and insect infestations are always a potential challenge. With TruLog™ steel siding, your post frame home, garage or shop siding is essentially maintenance free. Any dust, dirt or debris on your steel logs can be easily rinsed off with a garden hose.

Painting? Not unless you want to change the color. TruLog™ steel siding is finished with a rugged, durable coating and DuPont™ Teflon® surface protector which resists fading, scratches and other types of wear. TruLog™ siding is available in four natural wood colors and the coating stands up to even the most intense UV rays.

TruLog™ steel log siding is made of tough, heavy-gauge steel which is supported by a foam backer contoured to fit behind the steel siding. The foam backer makes your new post frame building more energy efficient and may help you reduce utility bills because it provides insulation and increases the R-value of your building’s walls.

Not only are you choosing durable, high-quality material, with TruLog™ steel log siding, you are choosing the authentic, old-world, natural log appearance. This siding is manufactured to look like real logs, by incorporating hewing and chinking. Hewing is a characteristic completely unique to the process of chopping logs, and has been re-created to give the look of hew lines and wood grain for a realistic appearance. TruLog™ utilizes patented chink line technology to recreate the traditional appearance of sealant for visual contrast between logs.

Want the look of logs without the hassles and expense for your new barn? Ask for TruLog™ on your new post frame building!

Groupon & Pole Barn Water Park

For those who have been hiding under rocks, or do not have internet access (in which case you are not reading this article), Groupon (derived from “group coupon”) swept onto the scene in November 2008.

Groupon offers one “Groupon” per day in each of the markets it serves. The Groupon works as an assurance contract – if a certain number of people sign up for the offer, then the deal becomes available to all. If the predetermined minimum number is not reached, no one gets the deal of the day. Groupon makes money by keeping approximately half of the money paid for the coupon.

With 2013 revenues of $2.573 billion dollars and a website ranked in the top 400 worldwide Groupon is a force in the marketplace.

Well, I am a Groupon subscriber so every day I get an email with the day’s Groupon deal. Today’s deal opened my eyes to a pole building use I had not considered previously – the water park!

great-wolf-lodgeThe Groupon was for Great Wolf Lodge Grand Mound in Centralia, Washington. The photo with the Groupon ad has various water slides covered by a pole building!

See it here: http://www.groupon.com/deals/ga-great-wolf-lodge-grand-mound-4

My best guess is this post frame building has a Use and Occupancy classification under the International Building Code (IBC) of A-3. An A-3 building would be, “Assembly uses intended for worship, recreation or amusement and other assembly uses not classified elsewhere in Group A”.

Post frame buildings are what is known as Type V-B construction – a wood framed assembly without a fire rating. IBC Table 503 limits V-B Group A-3 buildings to a single story of 6,000 sft (square feet) and a 40 foot overall height.

Using one-hour fire assemblies (Type V-A construction) would increase the limits to two stories, each of which could be 11,500 sft with a 50 foot overall height.

Increases in building area are allowed for in IBC Equation 5-1 for both frontage (if the building adjoins or has access to a public way) and for having an automatic sprinkler system. The sprinkler increase alone triples the allowable footage to 18,000 sft.

Ever considered putting a water park inside of a pole building? I probably never would have – if it wouldn’t have been for Groupon!

How LinkedIn is Important to Your New Pole Building

How LinkedIn is Important to Your Pole Building

If you are one of the many who have been single in the past decade or so it is OK to admit (even to yourself) to the use of the internet to have found a date. If not for finding a date to check out someone who you might have more than a passing interest in dating. Face it, the ‘net affords the ability to gather a lot of information.

Now, gentle reader, you may be wondering how one ties dating into investing in a new pole building.

Think of ordering a pole building, like dating. It takes some time and effort to build the right relationship. The person (or persons) who are working (hopefully on the same side of the table WITH you) to see your building best meets your needs, are very important. Don’t like them? Or worse, don’t trust them? If either or both, chances are this is not going to be a marriage made in heaven.

Why LinkedIn?

With over 225 million members, LinkedIn is the world’s largest professional network. Today, it’s assumed every business professional has a LinkedIn profile.

I WANT my clients to check me out, and LinkedIn gives a one stop shop for finding out what makes me tick.

Mike MombTake a minute and go check out my profile, Mike Momb, at LinkedIn.com.

This gives you a detail overview of where I have worked, where I went to school, and organizations I have or do belong to. It also gives a list of endorsements from others as to my skills and expertise. You will find 80 or more people have endorsed me for Building Materials, Timber, Wood, Materials, Green Building and Construction. In a nutshell, “I know my pooh”.

While some things can be made up, endorsements cannot be.

You can also see the LinkedIn groups I am a member of, as well as I am married and what my outside interests are. (I met my bride on the internet and after 14 glorious years, would do it all over again!)

Part of due diligence is knowing who is on your team, and who is merely a pretender.

You Can’t Build a Post Frame Building Here

Author’s Note: This is part 5 of a series of blogs written from a 6500+ motorcycle trip from WA to Ohio and back.  See Blog from Oct. 15th for the beginning…and hang on for the ride!

Still in Wisconsin and I get into a discussion with a former builder. He tries to tell me the City of X will not allow pole buildings to be constructed within the city limits.

Welcome to WisconsinI reserve the right to not disclose the name of the city, as this is the not the first time it has happened – in states other than Wisconsin.  It doesn’t happen often, but when it does…I am all over this one!

Now this happens to be one of my favorite subjects.  If I believed in past lives, maybe I was an attorney in one of them, because I get all too excited about the prospect of winning this argument.

Here is the basic Email I have used to sway Planning Departments (anyone is welcome to borrow this – or contact me and I will fight your battle):

“Post frame (pole) buildings are Code conforming buildings and the methodology for their structural design is outlined and/or referenced in every edition of the International Building Codes.

It is within the legal scope of a Planning Department or Commission (after following whatever processes are in place for public notifications, etc.) to be able to place limitations on the size of structures, their placement on a given property, as well as the appearance (e.g. restrictions on type and or color of siding and roofing materials). Any appearance restrictions must be applied uniformly to any Code conforming structural system.

In order to legally preclude the use of post frame construction (or of any other Code conforming structural system), the onus would be upon the jurisdiction to somehow prove their structural inadequacy. It would be both arbitrary and capricious to deny the utilization of post frame construction, which could easily leave open the door to a plethora of probably indefensible lawsuits – resulting in undue costs to the jurisdiction, as well as the taxpayers.

While I am not an attorney, nor profess to offer legal advice, I have been involved in similar circumstances with other jurisdictions, each of which has made the determination to NOT LIMIT the use of post frame buildings as a structural system. I would encourage the same decision in your jurisdiction.”

I first innocently emailed the City of X Building & Zoning Administrator:

“What restrictions would be placed upon post frame construction within the City?”

 I have to admit, I was almost saddened when the response was:

 It must meet all standards of the Wisconsin Uniform Dwelling Code”.

In the end, a win for post frame counts as one in the “W” column, no matter how it was done.

Wood: The Number One Green Building Material

There is a strong case to be made that wood is the greenest building material. But for it to really earn that title, we have to rethink how we build with it.

In North America, wood construction has dominated single-family and low-rise housing; steel and concrete have dominated commercial and mid-rise residential construction. This usage made some sense; the building codes favored noncombustible materials, and the low-rise residential market was big enough to suck up all the wood we could cut. The steel and concrete industries were, frankly, more innovative, and their products were considered more durable.

But this was before we worried about climate change, before fossil fuel prices started going through the roof, and before globalism started giving way to localism and the realization when one looks around, there sure is a lot of wood. In fact, right now we have more wood available than we know what to do with. So, why aren’t we using it more of it, and using it better?

With a few notable exceptions, we keep using wood primarily for the one thing we shouldn’t be building: single-family housing. There are 18 million vacant houses in the United States, yet we are cranking out 2x4s for the housing market.

There exists a more practical use for wood in construction. One which minimizes material use, from the ground up –is pole buildings. Wood really is the number one green building material!

The average footings and foundation for a 40’ x 60’ stick framed shop will take 10 to 15 yards of concrete, depending primarily upon frost depth. For a similar sized pole barn, less than two yards of concrete will support the columns.

Concrete, and the cement in it, is blamed for the production of 5 percent of the world’s CO2 production; aggregate extraction and transport is disruptive. But if you look at the concrete industry websites (for example http://www.cement.ca/en/Concrete-and-the-Environment.html), you would see the greenest of products, claiming it is a local resource (convince the neighbors of any gravel pit) and it is recyclable (into roadbeds). And it is heavy. So, when they say it only creates 175 pounds of emissions per ton, they don’t tell you how many tons go into a square foot of building (15 yards of concrete are over 5,000 pounds of emissions)!

When it comes to the structural framework, a post frame building uses only about 50% of the board footage of lumber required for a similarly sized stick frame building. Most pole buildings are steel roofed and steel sided. An average of over 25% or more of steeling roofing is recycled content and once its long useful lifespan is over, it can be recycled 100%!

When you talk about “going green”, go pole building!

To receive more pole building tips and advice subscribe to the pole barn guru blog!