Chapter 7: Splash Planks

Most Common Mistakes:

1. Failure to install re-bar hairpins in sidewall columns prior to splash planks
2. Setting splash planks to a point other than level.
3. Placing splash planks across door holes (other than entry doors).

Any pressure preservative treated lumber cut edge or end should be treated with a Copper Naphthenate solution. Copper Naphthenate is available as a brush-on (Cuprinol No. 10 Copper-Green® Wood Preserver [https://www.homedepot.com/p/Copper-Green-1-gal-Wood-Preservative-176223/300502829]) or spray-on ([https://www.homedepot.com/p/Copper-Green-Wood-Preservative-14-fl-oz-Aerosol-CopperSpr/100191444]).

Establishing Splash Plank Height

Measure, on each column, from grade to previously established grade marks. In event your plan is to pour a concrete slab greater in thickness than a nominal 4” (actual 3-1/2”) thickness, subtract any thickness greater than 3-1/2” from least measure. Using this distance, measure down each column and draw a pencil mark on column outside, parallel to ground. This mark will be each splash plank bottom.

IMPORTANT! If this step is done incorrectly, we can pretty much guarantee challenges throughout entire construction process.

Aligning With Existing Concrete Slabs

Set bottom of splash plank 3-1/2” below top of existing concrete slab.

CAUTION If a future concrete slab installation is contemplated, read and do next step “re-bar hairpins” before nailing splash planks in place.
Re-Bar Hairpins

After marking splash plank bottom location on columns, determine rebar hairpin hole locations, on sidewall columns, for drilling.

See Figure 7-1 & Figure 7-2 on following pages.

Figure 7-1: Concrete Floor to Sidewall Column Attachment
Figure 7-2: Rebar Hairpin Location
After properly marking holes on every sidewall column, drill each one using a 5/8" bit.

Galvanized re-bar is recommended. Otherwise, coat re-bar penetrating column with an asphalt emulsion, or similar, to isolate re-bar from pressure treated wood.

NOTE: #4 re-bar is ½" diameter. Cut re-bars (not provided with Hansen Buildings’ kit) into 5’ long segments and insert one through each column, centering five foot length in hole. Bend rebar legs, by hand, to a 45 degree angle with splash planks.

Seal rebar, into bored holes, at each column edge with silicone caulking.

Install Splash Planks

Each splash plank bottom will be even with marks placed on each column outside. See Figure 7-4

![Figure 7-4: Splash Plank Location](image-url)
If building site is other than perfectly level, there will be daylight showing beneath some splash planks.

Place any crowns up and nail according to building plans.

Usually there are six 10d galvanized common nails in each splash plank. See Figure 7-5

Figure 7-5: Pressure Treated (P.T.) Splash Plank to Column

Leave splash plank solid at any entry door locations, trying to use a board free from large knots or checks at future door opening location. Cut for entry door will be made in splash plank at a later time.

No splash plank will be across overhead or sliding door locations.

Why no splash plank across these openings? Because it would be in the way! If a concrete floor is being poured, splash plank top would be 3-3/4” higher than slab top.

When forming to pour a future concrete slab, a 2x4 will need to be placed temporarily across these openings.
In most cases building dimensions and dimensional lumber lengths will allow splash planks to extend from corner column edge to corner column edge. If building dimensions and splash plank lengths provided allow, splash planks may be installed so they will extend 1-1/2" past corner columns. **See Figure 7-6**

Figure 7-6: P.T. Splash Plank Applications
It will be all too tempting to install wall framing now. Please resist – building will be far easier to square and plumb when built in order outlined in this Construction Manual.

Here is why:

Trusses extend from column outside to column outside (plus any overhangs). If walls have been framed (girts, headers and door jambs placed) trusses will have to be jockeyed around to be lifted in place from building inside.

Most post frame buildings have one or more columns out of perfect placement along building length. Accept it, this is just going to happen no matter how perfect you or your builder might be. Most buildings have a far greater roof purlin quantity per bay, than wall girts per bay. By framing roof first, all purlins can be cut to same length in each bay, this is determined by engineered plan column spacing, less truss assembly thickness. When trusses are in place, column tops will easily move forward or backwards so all truss supporting columns end up spaced per plans. This also aids in an overall building roof length creation matching expectations.

During truss placement process (regardless of method used) there will come times when it is highly convenient to be able to walk ‘through’ a wall. Girts in place means having to fit through girts or walk around - either slow construction process.

It is far easier to square up roof without wall framing member resistance. Once roof sheathing or roof steel is in place, it makes it simpler to plumb building corners.

With roofing in place and walls open, a concrete slab may be installed if desired. This helps protect concrete pour from weather elements, especially rain or heat in summer. Pre-mix trucks can access and chute through any assessable sides or ends. This can eliminate need to pay for a pump truck.